Marta I Litter

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2543908/marta-i-litter-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

135
papers

8,314
h-index

89
g-index

389
ext. papers

8,989
ext. citations

7
avg, IF

L-index

#	Paper	IF	Citations
135	A short review on the preparation and use of iron nanomaterials for the treatment of pollutants in water and soil. <i>Emergent Materials</i> , 2022 , 5, 391	3.5	1
134	Application of a Fenton process after a biological nitrification treatment: A successful case for leachate treatment. <i>Case Studies in Chemical and Environmental Engineering</i> , 2022 , 5, 100208	7.5	2
133	Treatment of ethylmercury chloride by heterogeneous photocatalysis with TiO2. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2021 , 411, 113205	4.7	1
132	Emissions from Heated Terpenoids Present in Vaporizable Cannabis Concentrates. <i>Environmental Science & Environmental </i>	10.3	3
131	Volatile aldehyde emissions from "sub-ohm" vaping devices. <i>Environmental Research</i> , 2021 , 197, 111188	3 _{7.9}	1
130	Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. <i>Critical Reviews in Environmental Science and Technology</i> , 2021 , 51, 1727-1865	11.1	31
129	Assessment of the Arsenic Removal From Water Using Lanthanum Ferrite. <i>ChemistryOpen</i> , 2021 , 10, 790-797	2.3	Ο
128	ZnAl hydrotalcites modified with nanocomposites nZVI P AA for environmental remediation. <i>Journal of Materials Research and Technology</i> , 2021 , 14, 2243-2256	5.5	1
127	One pot molten salt synthesis and photocatalytic studies of magnetically separable copper ferrite microcrystals. <i>Materials Today Communications</i> , 2021 , 29, 102769	2.5	O
126	Influence of anodizing variables on Cr(VI) photocatalytic reduction using TiO2 nanotubes obtained by anodic oxidation. <i>Environmental Nanotechnology, Monitoring and Management</i> , 2021 , 16, 100537	3.3	О
125	Morphological characterization and photocatalytic efficiency measurements of pure silica transparent open-cell sponges coated with TiO2. <i>International Journal of Applied Ceramic Technology</i> , 2020 , 17, 1930-1939	2	4
124	Effect of different gases on the sonochemical Cr(VI) reduction in the presence of citric acid. <i>Chemosphere</i> , 2020 , 260, 127211	8.4	4
123	Introduction to Oxidative Technologies for Water Treatment. <i>Applied Environmental Science and Engineering for A Sustainable Future</i> , 2020 , 119-175	0.5	O
122	TiO2 coatings prepared by sol-gel and electrochemical methodologies 2020 , 39-74		O
121	Photocatalytic activity of TiO2 films prepared by cathodic arc deposition: Dependence on thickness and reuse of the photocatalysts. <i>Surface and Coatings Technology</i> , 2020 , 382, 125154	4.4	14
120	Arsenic in Latin America: Part II 2020 , 113-182		3
119	Arsenic in Latin America: Part I 2020 , 71-112		1

(2016-2019)

118	Iron-based nanoparticles prepared from yerba mate extract. Synthesis, characterization and use on chromium removal. <i>Journal of Environmental Management</i> , 2019 , 235, 1-8	7.9	21
117	Heated Tobacco Products: Volatile Emissions and Their Predicted Impact on Indoor Air Quality. Environmental Science & Environmental &	10.3	27
116	Arsenic in Argentina: Occurrence, human health, legislation and determination. <i>Science of the Total Environment</i> , 2019 , 676, 756-766	10.2	53
115	Arsenic in Argentina: Technologies for arsenic removal from groundwater sources, investment costs and waste management practices. <i>Science of the Total Environment</i> , 2019 , 690, 778-789	10.2	51
114	Photocatalytic reduction of Cr(VI) on hematite nanoparticles in the presence of oxalate and citrate. <i>Applied Catalysis B: Environmental</i> , 2019 , 242, 218-226	21.8	87
113	Sensitization of TiO2 by Dyes: A Way to Extend the Range of Photocatalytic Activity of TiO2 to the Visible Region 2018 , 253-282		4
112	Monitoring of toxicity of As(V) solutions by AMPHITOX test without and with treatment with zerovalent iron nanoparticles. <i>Environmental Toxicology and Pharmacology</i> , 2018 , 60, 138-145	5.8	6
111	Heterogeneous photocatalytic Cr(VI) reduction with short and long nanotubular TiO2 coatings prepared by anodic oxidation. <i>Materials Research Bulletin</i> , 2018 , 97, 150-157	5.1	23
110	Standard reporting of Electrical Energy per Order (EEO) for UV/H2O2 reactors (IUPAC Technical Report). <i>Pure and Applied Chemistry</i> , 2018 , 90, 1487-1499	2.1	18
109	Combined strategy for removal of Reactive Black 5 by biomass sorption on Macrocystis pyrifera and zerovalent iron nanoparticles. <i>Journal of Environmental Management</i> , 2018 , 207, 70-79	7.9	21
108	Sonochemical reduction of Cr(VI) in air in the presence of organic additives: What are the involved mechanistic pathways?. <i>Ultrasonics Sonochemistry</i> , 2018 , 48, 110-117	8.9	8
107	Advances on the synthesis of porous TiO2 coatings by anodic spark oxidation. Photocatalytic reduction of Cr(VI). <i>Materials Chemistry and Physics</i> , 2017 , 191, 106-113	4.4	14
106	An overview on heterogeneous Fenton and photoFenton reactions using zerovalent iron materials. Journal of Advanced Oxidation Technologies, 2017 , 20,		20
105	Last advances on TiO 2 -photocatalytic removal of chromium, uranium and arsenic. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2017 , 6, 150-158	7.9	50
104	Simple TiO2 Coatings by Sol G el Techniques Combined with Commercial TiO2 Particles for Use in Heterogeneous Photocatalysis. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 4946-4954	1.3	6
103	Emissions from Electronic Cigarettes: Assessing VapersRntake of Toxic Compounds, Secondhand Exposures, and the Associated Health Impacts. <i>Environmental Science & Environmental Science & Environment</i>	- 9 279	66
102	Reduction of nitrate by heterogeneous photocatalysis over pure and radiolytically modified TiO 2 samples in the presence of formic acid. <i>Catalysis Today</i> , 2017 , 281, 101-108	5.3	22
101	Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals. <i>Environmental Science & Documental Sc</i>	10.3	256

100	Mechanistic Features of the TiO2 Heterogeneous Photocatalysis of Arsenic and Uranyl Nitrate in Aqueous Suspensions Studied by the Stopped-Flow Technique. <i>ChemPhysChem</i> , 2016 , 17, 885-92	3.2	19
99	Role of Cr(III) deposition during the photocatalytic transformation of hexavalent chromium and citric acid over commercial TiO2 samples. <i>Photochemical and Photobiological Sciences</i> , 2016 , 15, 228-34	4.2	9
98	Application of the Stopped Flow Technique to the TiOEHeterogeneous Photocatalysis of Hexavalent Chromium in Aqueous Suspensions: Comparison with Oland HDlas Electron Acceptors. <i>Langmuir</i> , 2015 , 31, 6229-36	4	16
97	Nitric oxide emission during the reductive heterogeneous photocatalysis of aqueous nitrate with TiO2. <i>RSC Advances</i> , 2015 , 5, 85319-85322	3.7	14
96	Epidemiology of chronic disease related to arsenic in Argentina: A systematic review. <i>Science of the Total Environment</i> , 2015 , 538, 802-16	10.2	82
95	Porous Titanium Dioxide Coatings Obtained by Anodic Oxidation for Photocatalytic Applications 2015 , 9, 619-626		10
94	Abatement of toxicity of effluents containing Cr(VI) by heterogeneous photocatalysis. Toxicity assessment by AMPHITOX assay. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 122, 545-50	7	4
93	New insights in the heterogeneous photocatalytic removal of U(VI) in aqueous solution in the presence of 2-propanol. <i>Chemical Engineering Journal</i> , 2015 , 261, 27-35	14.7	49
92	Introducing Simple Detection of Bioavailable Arsenic at Rafaela (Santa Fe Province, Argentina) Using the ARSOlux Biosensor. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 5465-82	4.6	10
91	Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. <i>Pure and Applied Chemistry</i> , 2015 , 87, 557-567	2.1	45
90	Heterogeneous photocatalytic removal of U(VI) in the presence of formic acid: U(III) formation. <i>Chemical Engineering Journal</i> , 2015 , 270, 28-35	14.7	31
89	Detection and quantification of reactive oxygen species (ROS) in indoor air. <i>Talanta</i> , 2015 , 138, 20-27	6.2	14
88	Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)[Ir(III) passive outer layer structure. <i>Chemical Engineering Journal</i> , 2014 , 244, 569-575	14.7	87
87	Visible light enhanced Cr(VI) removal from aqueous solution by nanoparticulated zerovalent iron. <i>Catalysis Communications</i> , 2014 , 46, 57-60	3.2	20
86	Treatment of wastewater from an alkaline cleaning solution by combined coagulation and photo-Fenton processes. <i>Separation and Purification Technology</i> , 2014 , 132, 552-560	8.3	18
85	Photochemical reduction of U(VI) in aqueous solution in the presence of 2-propanol. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2014 , 277, 19-26	4.7	22
84	New Advances in Heterogeneous Photocatalysis for Treatment of Toxic Metals and Arsenic 2014 , 143-1	67	5
83	Adsorption of Boron by Metallurgical Slag and Iron Nanoparticles. <i>Adsorption Science and Technology</i> , 2014 , 32, 117-123	3.6	6

(2010-2014)

82	Preservation of the photocatalytic activity of TiO2 by EDTA in the reductive transformation of Cr(VI). Studies by Time Resolved Microwave Conductivity. <i>Catalysis Today</i> , 2014 , 224, 236-243	5.3	31
81	TiO2-photocatalytic transformation of Cr(VI) in the presence of EDTA: Comparison of different commercial photocatalysts and studies by Time Resolved Microwave Conductivity. <i>Applied Catalysis B: Environmental</i> , 2014 , 144, 189-195	21.8	54
80	In-situ technologies for groundwater treatment: the case of arsenic. <i>Arsenic in the Environment</i> , 2014 , 1-33		0
79	Evidence on dye clustering in the sensitization of TiO2 by aluminum phthalocyanine. <i>Photochemical and Photobiological Sciences</i> , 2013 , 12, 1984-90	4.2	8
78	Chemistry of NOx on TiO2 Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation, Water, and Coadsorbed K(.). <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 536-41	6.4	58
77	Exploiting electron storage in TiO2 nanoparticles for dark reduction of As(V) by accumulated electrons. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 10335-8	3.6	17
76	Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. <i>Science of the Total Environment</i> , 2012 , 429, 107-22	10.2	58
75	One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. <i>Science of the Total Environment</i> , 2012 , 429, 2-35	10.2	339
74	TiO2-photocatalytic treatment coupled with biological systems for the elimination of benzalkonium chloride in water. <i>Separation and Purification Technology</i> , 2012 , 91, 108-116	8.3	13
73	TiOEphotocatalytic reduction of pentavalent and trivalent arsenic: production of elemental arsenic and arsine. <i>Environmental Science & Environmental </i>	10.3	35
72	Photocatalytic activity of TiO2 thin films deposited by cathodic arc. <i>Applied Catalysis B: Environmental</i> , 2011 , 101, 676-681	21.8	50
71	Heterogeneous photocatalytic degradation of citric acid over TiO2. I: Mechanism of 3-oxoglutaric acid degradation. <i>Applied Catalysis B: Environmental</i> , 2011 , 102, 454-463	21.8	14
70	Heterogeneous photocatalytic degradation of citric acid over TiO2: II. Mechanism of citric acid degradation. <i>Applied Catalysis B: Environmental</i> , 2011 , 102, 555-562	21.8	27
69	Arsenic removal from groundwater of the Chaco-Pampean plain (Argentina) using natural geological materials as adsorbents. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2011 , 46, 1297-310	2.3	48
68	Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). <i>Pure and Applied Chemistry</i> , 2011 , 83, 931-1014	2.1	251
67	Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America - a critical analysis. <i>Water Research</i> , 2010 , 44, 5828-45	12.5	91
66	Medical Geology Studies in South America 2010 , 79-106		5
65	Degradation of Nonylphenol Ethoxylate-9 (NPE-9) by Photochemical Advanced Oxidation Technologies. <i>Industrial & Degradation Chemistry Research</i> , 2010 , 49, 6909-6915	3.9	33

64	Photoinduced reduction of chromium(VI) by iron aminopolycarboxylate complex (FeNTA). <i>Photochemical and Photobiological Sciences</i> , 2010 , 9, 823-9	4.2	5
63	Targeting arsenic-safe aquifers for drinking water supplies. <i>Environmental Geochemistry and Health</i> , 2010 , 32, 307-15	4.7	23
62	Possible treatments for arsenic removal in Latin American waters for human consumption. <i>Environmental Pollution</i> , 2010 , 158, 1105-18	9.3	216
61	Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254+185nm UV irradiation. <i>Applied Catalysis B: Environmental</i> , 2010 , 95, 312-319	21.8	100
60	The global arsenic crisis short introduction. Arsenic in the Environment, 2010, 3-19		3
59	Photochemical Advanced Oxidation Processes for Water and Wastewater Treatment. <i>Recent Patents on Engineering</i> , 2010 , 4, 217-241	0.3	64
58	Arsenic (V) removal with nanoparticulate zerovalent iron: Effect of UV light and humic acids. <i>Catalysis Today</i> , 2009 , 143, 261-268	5.3	81
57	Treatment of Chromium, Mercury, Lead, Uranium, and Arsenic in Water by Heterogeneous Photocatalysis. <i>Advances in Chemical Engineering</i> , 2009 , 37-67	0.6	57
56	Photoreduction of Cr(VI) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2. <i>Photochemical and Photobiological Sciences</i> , 2009 , 8, 604-12	4.2	30
55	Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions. <i>Photochemical and Photobiological Sciences</i> , 2009 , 8, 975-84	4.2	17
54	Photoinduced Reactivity of Strongly Coupled TiO2 Ligands under Visible Irradiation: An Examination of an Alizarin Nanoparticulate System. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 16532-16538	3.8	41
53	Vacuum-UV-photolysis of aqueous solutions of citric and gallic acids. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 197, 306-312	4.7	41
52	Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors. <i>Applied Catalysis B: Environmental</i> , 2008 , 84, 563-569	21.8	42
51	Photocatalytic removal of Pb(II) over TiO2 and PtIIiO2 powders. <i>Catalysis Today</i> , 2007 , 129, 127-135	5.3	42
50	Chemometric study on the TiO2-photocatalytic degradation of nitrilotriacetic acid. <i>Analytica Chimica Acta</i> , 2007 , 595, 89-97	6.6	29
49	Photocatalytic degradation of citric acid under different conditions: TiO2 heterogeneous photocatalysis against homogeneous photolytic processes promoted by Fe(III) and H2O2. <i>Applied Catalysis B: Environmental</i> , 2007 , 71, 117-124	21.8	63
48	Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: Relevance of Cr(V)Ditrate complexes. <i>Applied Catalysis B: Environmental</i> , 2007 , 71, 101-107	21.8	107
47	Low-Cost TiO[sub 2] Photocatalytic Technology for Water Potabilization in Plastic Bottles For Isolated Regions. Photocatalyst Fixation. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2007 , 129, 119	2.3	36

(2002-2007)

46	Field Tests of the Solar Water Detoxification SOLWATER Reactor in Los Pereyra, Tucumil, Argentina. <i>Journal of Solar Energy Engineering, Transactions of the ASME</i> , 2007 , 129, 127-134	2.3	32
45	Treatment of phenylmercury salts by heterogeneous photocatalysis over TiO(2). <i>Chemosphere</i> , 2007 , 69, 682-8	8.4	23
44	Impact of iron-complex (Fe(III)-NTA) on photoinduced degradation of 4-chlorophenol in aqueous solution. <i>Photochemical and Photobiological Sciences</i> , 2006 , 5, 395-402	4.2	52
43	Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamics. <i>Langmuir</i> , 2006 , 22, 3606-13	4	144
42	Photocatalytic EDTA degradation on suspended and immobilized TiO2. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2006 , 181, 188-194	4.7	73
41	The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. <i>Journal of Photochemistry and Photobiology C: Photochemistry Reviews</i> , 2006 , 7, 127-144	16.4	332
40	Total reflection X-ray fluorescence trace mercury determination by trapping complexation: Application in advanced oxidation technologies. <i>Spectrochimica Acta, Part B: Atomic Spectroscopy</i> , 2006 , 61, 1119-1123	3.1	28
39	Oxalic acid destruction at high concentrations by combined heterogeneous photocatalysis and photo-Fenton processes. <i>Catalysis Today</i> , 2005 , 101, 253-260	5.3	51
38	Mechanism of degradation of nitrilotriacetic acid by heterogeneous photocatalysis over TiO2 and platinized TiO2. <i>Journal of Applied Electrochemistry</i> , 2005 , 35, 733-740	2.6	10
37	Solar light induced removal of arsenic from contaminated groundwater: the interplay of solar energy and chemical variables. <i>Solar Energy</i> , 2004 , 77, 601-613	6.8	30
36	Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2004 , 167, 59-67	4.7	81
35	Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: involvement of Cr(V) species. <i>Environmental Science & Environmental Sc</i>	10.3	290
34	Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae: Comparative study with other Gram (Dbacteria. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2003 , 157, 81-85	4.7	164
33	Removal of EDTA by UV-C/hydrogen peroxide. <i>Environmental Technology (United Kingdom)</i> , 2003 , 24, 1277-81	2.6	17
32	Semiempirical Modeling with Application of Artificial Neural Networks for the Photocatalytic Reaction of Ethylenediaminetetraacetic Acid (EDTA) over Titanium Oxide (TiO2). <i>Helvetica Chimica Acta</i> , 2002 , 85, 799	2	11
31	Features of the transformation of HgII by heterogeneous photocatalysis over TiO2. <i>Catalysis Today</i> , 2002 , 76, 247-258	5.3	51
30	Enhancement of the photocatalytic activity of various TiO2 materials by platinisation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 148, 223-231	4.7	201
29	Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. <i>Journal of Photochemistry</i> and Photobiology A: Chemistry, 2002, 148, 247-255	4.7	163

28	EDTA destruction using the solar ferrioxalate advanced oxidation technology (AOT): Comparison with solar photo-Fenton treatment. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 151, 121-127	4.7	66
27	Photodegradation of an azo dye of the textile industry. <i>Chemosphere</i> , 2002 , 48, 393-9	8.4	110
26	Preparation and Physicochemical Properties of ZrO2 and Fe/ZrO2 Prepared by a Sol G el Technique. <i>Langmuir</i> , 2001 , 17, 202-210	4	182
25	Experimental Evidence in Favor of an Initial One-Electron-Transfer Process in the Heterogeneous Photocatalytic Reduction of Chromium(VI) over TiO2. <i>Langmuir</i> , 2001 , 17, 3515-3517	4	97
24	Kinetics and mechanisms of EDTA photocatalytic degradation with TiO2 under different experimental conditions. <i>International Journal of Photoenergy</i> , 2001 , 3, 193-199	2.1	40
23	Iron-doped titania semiconductor powders prepared by a solgel method. Part I: synthesis and characterization. <i>Applied Catalysis A: General</i> , 1999 , 177, 111-120	5.1	136
22	Iron-doped titania powders prepared by a solgel method.: Part II: Photocatalytic properties. <i>Applied Catalysis A: General</i> , 1999 , 178, 191-203	5.1	149
21	Photocatalytic properties of ZrO2 and Fe/ZrO2 semiconductors prepared by a solgel technique. Journal of Photochemistry and Photobiology A: Chemistry, 1999 , 129, 89-99	4.7	121
20	Heterogeneous photocatalysis Transition metal ions in photocatalytic systems. <i>Applied Catalysis B: Environmental</i> , 1999 , 23, 89-114	21.8	1115
19	Modeling of fluorescence quantum yields of supported dyes. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 419-425		58
18	Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. <i>Applied Catalysis B: Environmental</i> , 1998 , 16, 187-196	5 ^{21.8}	129
17	Effect of cationic polyelectrolytes on the dissolution of magnetite in thioglycolic acid solutions. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 115-119		4
16	Phthalocyanines bound to insoluble polystyrene. Synthesis and properties as energy-transfer photosensitizers. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1997 , 108, 273-282	4.7	23
15	Sensitization of TiO2 with phthalocyanines. Part 1. P hoto-oxidations using hydroxoaluminium tricarboxymonoamidephthalocyanine adsorbed on TiO2. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1996 , 92, 5081-5088		65
14	Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron(III) acetylacetonate. <i>Journal of Molecular Catalysis A</i> , 1996 , 106, 267-276		123
13	Photocatalytic properties of iron-doped titania semiconductors. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1996 , 98, 171-181	4.7	366
12	Comparison of the photocatalytic efficiency of TiO2, iron oxides and mixed Ti(IV)?Fe(III) oxides: photodegradation of oligocarboxylic acids. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1994 , 84, 183-193	4.7	86
11	Photodissolution of iron oxides in malonic acid. <i>Canadian Journal of Chemistry</i> , 1994 , 72, 2037-2043	0.9	12

LIST OF PUBLICATIONS

10	Effect of anionic polyelectrolytes on the dissolution of magnetite in thioglycolic acid solutions. Journal of the Chemical Society, Faraday Transactions, 1993 , 89, 1049		5	
9	Photodissolution of iron oxides. IV. A comparative study on the photodissolution of hematite, magnetite, and maghemite in EDTA media. <i>Canadian Journal of Chemistry</i> , 1992 , 70, 2502-2510	0.9	46	
8	Photodissolution of iron oxides. 3. Interplay of photochemical and thermal processes in maghemite/carboxylic acid systems. <i>Environmental Science & Environmental Science & En</i>	10.3	38	
7	Photodissolution of iron oxides II: The lack of efficiency of thiocyanate. <i>Canadian Journal of Chemistry</i> , 1990 , 68, 728-730	0.9	7	
6	Polyaromatic ether-ketones and polyaromatic ether-ketone sulfonamides from 4-phenoxybenzoyl chloride and from 4,4?-dichloroformyldiphenyl ether. <i>Journal of Polymer Science: Polymer Chemistry Edition</i> , 1985 , 23, 2205-2223		27	
5	Elimination in aldonolactones: a convenient synthesis of 2,4,6-tri-O-benzoyl-3-deoxy-D-arabino-hexono-1,5-lactone. <i>Carbohydrate Research</i> , 1974 , 36, 185-187	2.9	30	
4	Elimination in aldonolactones. The formation of an unsaturated derivative on benzoylation of d-glycero-d-gulo-heptono-1,4-lactone. <i>Carbohydrate Research</i> , 1973 , 26, 431-434	2.9	16	
3	The formation of an unsaturated lactone derivative on benzoylation of D-galactonolactone. <i>Carbohydrate Research</i> , 1971 , 20, 442-4	2.9	19	
2	Anomalous reaction of d-gluconamide with benzoyl chloride in anhydrous pyridine. <i>Carbohydrate Research</i> , 1970 , 14, 103-107	2.9	3	
1	Introduction to Photochemical Advanced Oxidation Processes for Water Treatment325-366		57	