Marta I Litter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2543908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneous photocatalysis Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 1999, 23, 89-114.	10.8	1,229
2	One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 2012, 429, 2-35.	3.9	414
3	Photocatalytic properties of iron-doped titania semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 98, 171-181.	2.0	405
4	The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2006, 7, 127-144.	5.6	385
5	Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals. Environmental Science & Technology, 2016, 50, 9644-9651.	4.6	348
6	Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure and Applied Chemistry, 2011, 83, 931-1014.	0.9	333
7	Heterogeneous Photocatalytic Reduction of Chromium(VI) over TiO2Particles in the Presence of Oxalate:Â Involvement of Cr(V) Species. Environmental Science & Technology, 2004, 38, 1589-1594.	4.6	329
8	Possible treatments for arsenic removal in Latin American waters for human consumption. Environmental Pollution, 2010, 158, 1105-1118.	3.7	252
9	Enhancement of the photocatalytic activity of various TiO2 materials by platinisation. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 223-231.	2.0	222
10	Preparation and Physicochemical Properties of ZrO2and Fe/ZrO2Prepared by a Solâ^'Gel Technique. Langmuir, 2001, 17, 202-210.	1.6	210
11	Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157, 81-85.	2.0	190
12	Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 247-255.	2.0	178
13	Phenol Photodegradation on Platinized-TiO2 Photocatalysts Related to Charge-Carrier Dynamics. Langmuir, 2006, 22, 3606-3613.	1.6	157
14	Iron-doped titania powders prepared by a sol–gel method Applied Catalysis A: General, 1999, 178, 191-203.	2.2	156
15	Iron-doped titania semiconductor powders prepared by a sol–gel method. Part I: synthesis and characterization. Applied Catalysis A: General, 1999, 177, 111-120.	2.2	153
16	Photodegradation of an azo dye of the textile industry. Chemosphere, 2002, 48, 393-399.	4.2	148
17	Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. Applied Catalysis B: Environmental, 1998, 16, 187-196.	10.8	143
18	Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron(III) acetylacetonate. Journal of Molecular Catalysis A, 1996, 106, 267-276.	4.8	142

#	Article	IF	CITATIONS
19	Photocatalytic properties of ZrO2 and Fe/ZrO2 semiconductors prepared by a sol–gel technique. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 129, 89-99.	2.0	142
20	Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: Relevance of Cr(V)–citrate complexes. Applied Catalysis B: Environmental, 2007, 71, 101-107.	10.8	120
21	Highly efficient removal of Cr(VI) from water with nanoparticulated zerovalent iron: Understanding the Fe(III)–Cr(III) passive outer layer structure. Chemical Engineering Journal, 2014, 244, 569-575.	6.6	111
22	Epidemiology of chronic disease related to arsenic in Argentina: A systematic review. Science of the Total Environment, 2015, 538, 802-816.	3.9	111
23	Photocatalytic reduction of Cr(VI) on hematite nanoparticles in the presence of oxalate and citrate. Applied Catalysis B: Environmental, 2019, 242, 218-226.	10.8	110
24	Experimental Evidence in Favor of an Initial One-Electron-Transfer Process in the Heterogeneous Photocatalytic Reduction of Chromium(VI) over TiO2. Langmuir, 2001, 17, 3515-3517.	1.6	108
25	Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254+185nm UV irradiation. Applied Catalysis B: Environmental, 2010, 95, 312-319.	10.8	107
26	Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America – A critical analysis. Water Research, 2010, 44, 5828-5845.	5.3	103
27	Comparison of the photocatalytic efficiency of TiO2, iron oxides and mixed Ti(IV)î—,Fe(III) oxides: photodegradation of oligocarboxylic acids. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 84, 183-193.	2.0	99
28	Arsenic (V) removal with nanoparticulate zerovalent iron: Effect of UV light and humic acids. Catalysis Today, 2009, 143, 261-268.	2.2	99
29	Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 167, 59-67.	2.0	91
30	Arsenic in Argentina: Occurrence, human health, legislation and determination. Science of the Total Environment, 2019, 676, 756-766.	3.9	87
31	Photochemical Advanced Oxidation Processes for Water and Wastewater Treatment. Recent Patents on Engineering, 2010, 4, 217-241.	0.3	86
32	Emissions from Electronic Cigarettes: Assessing Vapers' Intake of Toxic Compounds, Secondhand Exposures, and the Associated Health Impacts. Environmental Science & Technology, 2017, 51, 9271-9279.	4.6	85
33	Photocatalytic EDTA degradation on suspended and immobilized TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 188-194.	2.0	84
34	Chemistry of NO _{<i>x</i>} on TiO ₂ Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation, Water, and Coadsorbed K ⁺ . Journal of Physical Chemistry Letters, 2013, 4, 536-541.	2.1	79
35	Arsenic in Argentina: Technologies for arsenic removal from groundwater sources, investment costs and waste management practices. Science of the Total Environment, 2019, 690, 778-789.	3.9	78
36	EDTA destruction using the solar ferrioxalate advanced oxidation technology (AOT). Journal of Photochemistry and Photobiology A: Chemistry, 2002, 151, 121-127.	2.0	70

#	Article	IF	CITATIONS
37	Photocatalytic degradation of citric acid under different conditions: TiO2 heterogeneous photocatalysis against homogeneous photolytic processes promoted by Fe(III) and H2O2. Applied Catalysis B: Environmental, 2007, 71, 117-124.	10.8	70
38	Arsenic in Latin America: New findings on source, mobilization and mobility in human environments in 20 countries based on decadal research 2010-2020. Critical Reviews in Environmental Science and Technology, 2021, 51, 1727-1865.	6.6	70
39	Sensitization of TiO2with phthalocyanines. Part 1.—Photo-oxidations using hydroxoaluminium tricarboxymonoamidephthalocyanine adsorbed on TiO2. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 5081-5088.	1.7	69
40	Modeling of fluorescence quantum yields of supported dyes Aluminium carboxyphthalocyanine on cellulose. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 419-425.	1.7	69
41	Introduction to Photochemical Advanced Oxidation Processes for Water Treatment. , 0, , 325-366.		68
42	New insights in the heterogeneous photocatalytic removal of U(VI) in aqueous solution in the presence of 2-propanol. Chemical Engineering Journal, 2015, 261, 27-35.	6.6	66
43	Last advances on TiO2-photocatalytic removal of chromium, uranium and arsenic. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 150-158.	3.2	65
44	Treatment of Chromium, Mercury, Lead, Uranium, and Arsenic in Water by Heterogeneous Photocatalysis. Advances in Chemical Engineering, 2009, , 37-67.	0.5	64
45	Impact of iron-complex (Fe(iii)–NTA) on photoinduced degradation of 4-chlorophenol in aqueous solution. Photochemical and Photobiological Sciences, 2006, 5, 395.	1.6	62
46	Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. Science of the Total Environment, 2012, 429, 107-122.	3.9	61
47	Mechanisms of removal of heavy metals and arsenic from water by TiO ₂ -heterogeneous photocatalysis. Pure and Applied Chemistry, 2015, 87, 557-567.	0.9	60
48	TiO2-photocatalytic transformation of Cr(VI) in the presence of EDTA: Comparison of different commercial photocatalysts and studies by Time Resolved Microwave Conductivity. Applied Catalysis B: Environmental, 2014, 144, 189-195.	10.8	58
49	Oxalic acid destruction at high concentrations by combined heterogeneous photocatalysis and photo-Fenton processes. Catalysis Today, 2005, 101, 253-260.	2.2	56
50	Photocatalytic activity of TiO2 thin films deposited by cathodic arc. Applied Catalysis B: Environmental, 2011, 101, 676-681.	10.8	56
51	Features of the transformation of HgII by heterogeneous photocatalysis over TiO2. Catalysis Today, 2002, 76, 247-258.	2.2	55
52	Arsenic removal from groundwater of the Chaco-Pampean Plain (Argentina) using natural geological materials as adsorbents. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1297-1310.	0.9	54
53	Photodissolution of iron oxides. IV. A comparative study on the photodissolution of hematite, magnetite, and maghemite in EDTA media. Canadian Journal of Chemistry, 1992, 70, 2502-2510.	0.6	52
54	Photocatalytic reduction of Pb(II) over TiO2: New insights on the effect of different electron donors. Applied Catalysis B: Environmental, 2008, 84, 563-569.	10.8	50

#	Article	IF	CITATIONS
55	Heated Tobacco Products: Volatile Emissions and Their Predicted Impact on Indoor Air Quality. Environmental Science & Technology, 2019, 53, 7866-7876.	4.6	49
56	TiO ₂ -Photocatalytic Reduction of Pentavalent and Trivalent Arsenic: Production of Elemental Arsenic and Arsine. Environmental Science & (amp; Technology, 2012, 46, 2299-2308.)	4.6	46
57	Photocatalytic removal of Pb(II) over TiO2 and Pt–TiO2 powders. Catalysis Today, 2007, 129, 127-135.	2.2	45
58	Vacuum-UV-photolysis of aqueous solutions of citric and gallic acids. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 306-312.	2.0	45
59	Kinetics and mechanisms of EDTA photocatalytic degradation withTiO2under different experimental conditions. International Journal of Photoenergy, 2001, 3, 193-199.	1.4	43
60	Photoinduced Reactivity of Strongly Coupled TiO ₂ Ligands under Visible Irradiation: An Examination of an Alizarin Red@TiO ₂ Nanoparticulate System. Journal of Physical Chemistry C, 2008, 112, 16532-16538.	1.5	43
61	Photodissolution of iron oxides. 3. Interplay of photochemical and thermal processes in maghemite/carboxylic acid systems. Environmental Science & Technology, 1991, 25, 1907-1913.	4.6	42
62	Heterogeneous photocatalytic removal of U(VI) in the presence of formic acid: U(III) formation. Chemical Engineering Journal, 2015, 270, 28-35.	6.6	42
63	Polyaromatic ether-ketones and polyaromatic ether-ketone sulfonamides from 4-phenoxybenzoyl chloride and from 4,4′-dichloroformyldiphenyl ether. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23, 2205-2223.	0.8	41
64	Low-Cost TiO[sub 2] Photocatalytic Technology for Water Potabilization in Plastic Bottles For Isolated Regions. Photocatalyst Fixation. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 119.	1.1	40
65	Degradation of Nonylphenol Ethoxylate-9 (NPE-9) by Photochemical Advanced Oxidation Technologies. Industrial & Engineering Chemistry Research, 2010, 49, 6909-6915.	1.8	39
66	Field Tests of the Solar Water Detoxification SOLWATER Reactor in Los Pereyra, TucumÃin, Argentina. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 127-134.	1.1	38
67	Solar light induced removal of arsenic from contaminated groundwater: the interplay of solar energy and chemical variables. Solar Energy, 2004, 77, 601-613.	2.9	35
68	Preservation of the photocatalytic activity of TiO2 by EDTA in the reductive transformation of Cr(VI). Studies by Time Resolved Microwave Conductivity. Catalysis Today, 2014, 224, 236-243.	2.2	35
69	An overview on heterogeneous Fenton and photoFenton reactions using zerovalent iron materials. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	34
70	Combined strategy for removal of Reactive Black 5 by biomass sorption on Macrocystis pyrifera and zerovalent iron nanoparticles. Journal of Environmental Management, 2018, 207, 70-79.	3.8	34
71	Standard reporting of Electrical Energy per Order (<i>E</i> _{EO}) for UV/H ₂ O ₂ reactors (IUPAC Technical Report). Pure and Applied Chemistry, 2018, 90, 1487-1499.	0.9	34
72	β-Elimination in aldonolactones: a convenient synthesis of 2,4,6-tri-O-benzoyl-3-deoxy-D-arabino-hexono-1,5-lactone. Carbohydrate Research, 1974, 36, 185-187.	1.1	33

#	Article	IF	CITATIONS
73	Photoreduction of Cr(vi) using hydroxoaluminiumtricarboxymonoamide phthalocyanine adsorbed on TiO2. Photochemical and Photobiological Sciences, 2009, 8, 604-612.	1.6	32
74	Reduction of nitrate by heterogeneous photocatalysis over pure and radiolytically modified TiO 2 samples in the presence of formic acid. Catalysis Today, 2017, 281, 101-108.	2.2	32
75	Total reflection X-ray fluorescence trace mercury determination by trapping complexation: Application in advanced oxidation technologies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 1119-1123.	1.5	31
76	Chemometric study on the TiO2-photocatalytic degradation of nitrilotriacetic acid. Analytica Chimica Acta, 2007, 595, 89-97.	2.6	30
77	Heterogeneous photocatalytic degradation of citric acid over TiO2. Applied Catalysis B: Environmental, 2011, 102, 555-562.	10.8	30
78	Visible light enhanced Cr(VI) removal from aqueous solution by nanoparticulated zerovalent iron. Catalysis Communications, 2014, 46, 57-60.	1.6	29
79	Heterogeneous photocatalytic Cr(VI) reduction with short and long nanotubular TiO 2 coatings prepared by anodic oxidation. Materials Research Bulletin, 2018, 97, 150-157.	2.7	29
80	Iron-based nanoparticles prepared from yerba mate extract. Synthesis, characterization and use on chromium removal. Journal of Environmental Management, 2019, 235, 1-8.	3.8	28
81	Phthalocyanines bound to insoluble polystyrene. Synthesis and properties as energy-transfer photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 273-282.	2.0	27
82	Targeting arsenic-safe aquifers for drinking water supplies. Environmental Geochemistry and Health, 2010, 32, 307-315.	1.8	27
83	Photochemical reduction of U(VI) in aqueous solution in the presence of 2-propanol. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 277, 19-26.	2.0	27
84	Nitric oxide emission during the reductive heterogeneous photocatalysis of aqueous nitrate with TiO ₂ . RSC Advances, 2015, 5, 85319-85322.	1.7	25
85	Treatment of phenylmercury salts by heterogeneous photocatalysis over TiO2. Chemosphere, 2007, 69, 682-688.	4.2	24
86	Mechanistic Features of the TiO ₂ Heterogeneous Photocatalysis of Arsenic and Uranyl Nitrate in Aqueous Suspensions Studied by the Stoppedâ€Flow Technique. ChemPhysChem, 2016, 17, 885-892.	1.0	24
87	The formation of an unsaturated lactone derivative on benzoylation of D-galactonolactone. Carbohydrate Research, 1971, 20, 442-444.	1.1	23
88	Treatment of wastewater from an alkaline cleaning solution by combined coagulation and photo-Fenton processes. Separation and Purification Technology, 2014, 132, 552-560.	3.9	21
89	Exploiting electron storage in TiO2 nanoparticles for dark reduction of As(v) by accumulated electrons. Physical Chemistry Chemical Physics, 2013, 15, 10335.	1.3	20
90	Photocatalytic activity of TiO2 films prepared by cathodic arc deposition: Dependence on thickness and reuse of the photocatalysts. Surface and Coatings Technology, 2020, 382, 125154.	2.2	20

#	Article	IF	CITATIONS
91	Removal of EDTA by UVâ€C/hydrogen peroxide. Environmental Technology (United Kingdom), 2003, 24, 1277-1281.	1.2	19
92	Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions. Photochemical and Photobiological Sciences, 2009, 8, 975-984.	1.6	19
93	Advances on the synthesis of porous TiO2 coatings by anodic spark oxidation. Photocatalytic reduction of Cr(VI). Materials Chemistry and Physics, 2017, 191, 106-113.	2.0	18
94	β-Elimination in aldonolactones. The formation of an unsaturated derivative on benzoylation of d-glycero-d-gulo-heptono-1,4-lactone. Carbohydrate Research, 1973, 26, 431-434.	1.1	17
95	TiO2-photocatalytic treatment coupled with biological systems for the elimination of benzalkonium chloride in water. Separation and Purification Technology, 2012, 91, 108-116.	3.9	17
96	Application of the Stopped Flow Technique to the TiO ₂ -Heterogeneous Photocatalysis of Hexavalent Chromium in Aqueous Suspensions: Comparison with O ₂ and H ₂ O ₂ as Electron Acceptors. Langmuir, 2015, 31, 6229-6236.	1.6	16
97	Heterogeneous photocatalytic degradation of citric acid over TiO2. I: Mechanism of 3-oxoglutaric acid degradation. Applied Catalysis B: Environmental, 2011, 102, 454-463.	10.8	15
98	Detection and quantification of reactive oxygen species (ROS) in indoor air. Talanta, 2015, 138, 20-27.	2.9	15
99	Introducing Simple Detection of Bioavailable Arsenic at Rafaela (Santa Fe Province, Argentina) Using the ARSOlux Biosensor. International Journal of Environmental Research and Public Health, 2015, 12, 5465-5482.	1.2	14
100	Effect of different gases on the sonochemical Cr(VI) reduction in the presence of citric acid. Chemosphere, 2020, 260, 127211.	4.2	14
101	Semiempirical Modeling with Application of Artificial Neural Networks for the Photocatalytic Reaction of Ethylenediaminetetraacetic Acid (EDTA) over Titanium Oxide (TiO2). Helvetica Chimica Acta, 2002, 85, 799.	1.0	13
102	Mechanism of degradation of nitrilotriacetic acid by heterogeneous photocatalysis over TiO2 and platinized TiO2. Journal of Applied Electrochemistry, 2005, 35, 733-740.	1.5	13
103	Photodissolution of iron oxides in malonic acid. Canadian Journal of Chemistry, 1994, 72, 2037-2043.	0.6	12
104	Porous Titanium Dioxide Coatings Obtained by Anodic Oxidation for Photocatalytic Applications. , 2015, 9, 619-626.		12
105	Role of Cr(iii) deposition during the photocatalytic transformation of hexavalent chromium and citric acid over commercial TiO2 samples. Photochemical and Photobiological Sciences, 2016, 15, 228-234.	1.6	12
106	Nanotechnologies for the treatment of water, air and soil. Journal of Hazardous Materials, 2012, 211-212, 1-2.	6.5	11
107	Sonochemical reduction of Cr(VI) in air in the presence of organic additives: What are the involved mechanistic pathways?. Ultrasonics Sonochemistry, 2018, 48, 110-117.	3.8	11
108	Evidence on dye clustering in the sensitization of TiO2 by aluminum phthalocyanine. Photochemical and Photobiological Sciences, 2013, 12, 1984-1990.	1.6	9

#	Article	IF	CITATIONS
109	Photodissolution of iron oxides II: The lack of efficiency of thiocyanate. Canadian Journal of Chemistry, 1990, 68, 728-730.	0.6	8
110	Groundwater arsenic: From genesis to sustainable remediation. Water Research, 2010, 44, 5511.	5.3	8
111	Simple TiO ₂ Coatings by Sol–Gel Techniques Combined with Commercial TiO ₂ Particles for Use in Heterogeneous Photocatalysis. Journal of Nanoscience and Nanotechnology, 2017, 17, 4946-4954.	0.9	7
112	Volatile aldehyde emissions from "sub-ohm―vaping devices. Environmental Research, 2021, 197, 111188.	3.7	7
113	Medical Geology Studies in South America. , 2010, , 79-106.		6
114	Photoinduced reduction of chromium(vi) by iron aminopolycarboxylate complex (FeNTA). Photochemical and Photobiological Sciences, 2010, 9, 823-829.	1.6	6
115	Adsorption of Boron by Metallurgical Slag and Iron Nanoparticles. Adsorption Science and Technology, 2014, 32, 117-123.	1.5	6
116	Abatement of toxicity of effluents containing Cr(VI) by heterogeneous photocatalysis. Toxicity assessment by AMPHITOX assay. Ecotoxicology and Environmental Safety, 2015, 122, 545-550.	2.9	6
117	Monitoring of toxicity of As(V) solutions by AMPHITOX test without and with treatment with zerovalent iron nanoparticles. Environmental Toxicology and Pharmacology, 2018, 60, 138-145.	2.0	6
118	Morphological characterization and photocatalytic efficiency measurements of pure silica transparent open ell sponges coated with TiO ₂ . International Journal of Applied Ceramic Technology, 2020, 17, 1930-1939.	1.1	6
119	ZnAl hydrotalcites modified with nanocomposites nZVI–PAA for environmental remediation. Journal of Materials Research and Technology, 2021, 14, 2243-2256.	2.6	6
120	Anomalous reaction of d-gluconamide with benzoyl chloride in anhydrous pyridine. Carbohydrate Research, 1970, 14, 103-107.	1.1	5
121	Effect of anionic polyelectrolytes on the dissolution of magnetite in thioglycolic acid solutions. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1049.	1.7	5
122	Arsenic in Latin America: Part II. , 2020, , 113-182.		5
123	Emissions from Heated Terpenoids Present in Vaporizable Cannabis Concentrates. Environmental Science & Technology, 2021, 55, 6160-6170.	4.6	5
124	Effect of cationic polyelectrolytes on the dissolution of magnetite in thioglycolic acid solutions. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 115-119.	1.7	4
125	Assessment of the Arsenic Removal From Water Using Lanthanum Ferrite. ChemistryOpen, 2021, 10, 790-797.	0.9	4
126	A short review on the preparation and use of iron nanomaterials for the treatment of pollutants in water and soil. Emergent Materials, 2022, 5, 391-400.	3.2	4

#	Article	IF	CITATIONS
127	The global arsenic crisis—a short introduction. Arsenic in the Environment, 2010, , 3-19.	0.0	3
128	Application of a Fenton process after a biological nitrification treatment: A successful case for leachate treatment. Case Studies in Chemical and Environmental Engineering, 2022, 5, 100208.	2.9	3
129	Treatment of ethylmercury chloride by heterogeneous photocatalysis with TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 411, 113205.	2.0	2
130	Introduction to Oxidative Technologies for Water Treatment. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 119-175.	0.2	2
131	TiO2 coatings prepared by sol-gel and electrochemical methodologies. , 2020, , 39-74.		2
132	Photocatalytic reactions over TiO2 supported on porcelain spheres. , 2004, , 303-308.		1
133	Arsenic in Latin America: Part I. , 2020, , 71-112.		1
134	One pot molten salt synthesis and photocatalytic studies of magnetically separable copper ferrite microcrystals. Materials Today Communications, 2021, 29, 102769.	0.9	1
135	Influence of anodizing variables on Cr(VI) photocatalytic reduction using TiO2 nanotubes obtained by anodic oxidation. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100537.	1.7	1
136	In-situ technologies for groundwater treatment: the case of arsenic. Arsenic in the Environment, 2014, , 1-33.	0.0	1
137	New insights on the UV/TiO2 photocatalytic treatment of thiomersal and its 2-sulfobenzoic acid product. Journal of Photocatalysis, 2021, 02, .	0.4	0
138	Photocatalytic and mechanical properties of immobilized nanotubular TiO2 photocatalysts obtained by anodic oxidation: a novel combined analysis. Photochemical and Photobiological Sciences, 0, , .	1.6	0