
Xiao Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2543848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. Journal of Environmental Management, 2019, 237, 128-138.	3.8	266
2	Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma, 2018, 332, 100-108.	2.3	206
3	Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Applied Energy, 2017, 185, 214-222.	5.1	198
4	Fabrication of sustainable manganese ferrite modified biochar from vinasse for enhanced adsorption of fluoroquinolone antibiotics: Effects and mechanisms. Science of the Total Environment, 2020, 709, 136079.	3.9	187
5	Effect of gasification biochar application on soil quality: Trace metal behavior, microbial community, and soil dissolved organic matter. Journal of Hazardous Materials, 2019, 365, 684-694.	6.5	156
6	Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water. Journal of Cleaner Production, 2020, 247, 119579.	4.6	141
7	Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. Journal of Hazardous Materials, 2020, 391, 121147.	6.5	132
8	Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: current practices and future prospects. Applied Biological Chemistry, 2020, 63, .	0.7	129
9	Characterization of bioenergy biochar and its utilization for metal/metalloid immobilization in contaminated soil. Science of the Total Environment, 2018, 640-641, 704-713.	3.9	110
10	Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication. Renewable and Sustainable Energy Reviews, 2020, 124, 109785.	8.2	107
11	Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. Environment International, 2021, 146, 106207.	4.8	105
12	Characterization and ecotoxicological investigation of biochar produced via slow pyrolysis: Effect of feedstock composition and pyrolysis conditions. Journal of Hazardous Materials, 2019, 365, 178-185.	6.5	100
13	Novel insights into the adsorption of organic contaminants by biochar: A review. Chemosphere, 2022, 287, 132113.	4.2	97
14	The potential of biochar as sorptive media for removal of hazardous benzene in air. Chemical Engineering Journal, 2019, 361, 1576-1585.	6.6	94
15	Polyamide 6 microplastics facilitate methane production during anaerobic digestion of waste activated sludge. Chemical Engineering Journal, 2021, 408, 127251.	6.6	75
16	A comparison of figure of merit (FOM) for various materials in adsorptive removal of benzene under ambient temperature and pressure. Environmental Research, 2019, 168, 96-108.	3.7	73
17	Cadmium isotopes as tracers in environmental studies: A review. Science of the Total Environment, 2020, 736, 139585.	3.9	66
18	Recent advances in nitrous oxide production and mitigation in wastewater treatment. Water Research, 2020, 184, 116168.	5.3	61

#	Article	IF	CITATIONS
19	Tin-Functionalized Wood Biochar as a Sustainable Solid Catalyst for Glucose Isomerization in Biorefinery. ACS Sustainable Chemistry and Engineering, 2019, 7, 4851-4860.	3.2	59
20	Green sustainable and highly efficient hematite nanoparticles modified biochar-clay granular composite for Cr(VI) removal and related mechanism. Journal of Cleaner Production, 2020, 276, 123009.	4.6	55
21	Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties. Bioresource Technology, 2017, 246, 160-167.	4.8	50
22	Influence of roxithromycin as antibiotic residue on volatile fatty acids recovery in anaerobic fermentation of waste activated sludge. Journal of Hazardous Materials, 2020, 394, 122570.	6.5	50
23	CYP81A68 confers metabolic resistance to ALS and ACCase-inhibiting herbicides and its epigenetic regulation in Echinochloa crus-galli. Journal of Hazardous Materials, 2022, 428, 128225.	6.5	50
24	Metal(loid) immobilization in soils with biochars pyrolyzed in N2 and CO2 environments. Science of the Total Environment, 2018, 630, 1103-1114.	3.9	48
25	New mechanistic insight into rapid adsorption of pharmaceuticals from water utilizing activated biochar. Environmental Research, 2021, 202, 111693.	3.7	46
26	Cadmium isotopic fractionation in lead-zinc smelting process and signatures in fluvial sediments. Journal of Hazardous Materials, 2021, 411, 125015.	6.5	45
27	Fabricating poly(vinyl alcohol)/gelatin composite sponges with high absorbency and water-triggered expansion for noncompressible hemorrhage and wound healing. Journal of Materials Chemistry B, 2021, 9, 1568-1582.	2.9	44
28	Interactive influences of meteorological and socioeconomic factors on ecosystem service values in a river basin with different geomorphic features. Science of the Total Environment, 2022, 829, 154595.	3.9	44
29	Contrasting abiotic As(III) immobilization by undissolved and dissolved fractions of biochar in Ca2+-rich groundwater under anoxic conditions. Water Research, 2020, 183, 116106.	5.3	42
30	Effects of carbon dioxide on pyrolysis of peat. Energy, 2017, 120, 929-936.	4.5	40
31	Monitoring the nitrous oxide emissions and biological nutrient removal from wastewater treatment: Impact of perfluorooctanoic acid. Journal of Hazardous Materials, 2021, 402, 123469.	6.5	40
32	Responses of ammonia-oxidizing microorganisms to biochar and compost amendments of heavy metals-polluted soil. Journal of Environmental Sciences, 2021, 102, 263-272.	3.2	40
33	Fabrication and application of magnetic starch-based activated hierarchical porous carbon spheres for the efficient removal of dyes from water. Materials Chemistry and Physics, 2016, 174, 179-186.	2.0	39
34	Fabrication of spherical biochar by a two-step thermal process from waste potato peel. Science of the Total Environment, 2018, 626, 478-485.	3.9	35
35	A combined management scheme to simultaneously mitigate As and Cd concentrations in rice cultivated in contaminated paddy soil. Journal of Hazardous Materials, 2021, 416, 125837.	6.5	35
36	Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor. Biochemical Engineering Journal, 2019, 149, 107249.	1.8	34

#	Article	IF	CITATIONS
37	Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination. Science of the Total Environment, 2021, 774, 145143.	3.9	29
38	Escalating health risk of thallium and arsenic from farmland contamination fueled by cement-making activities: A hidden but significant source. Science of the Total Environment, 2021, 782, 146603.	3.9	28
39	Evaluation of potential ecological risks in potential toxic elements contaminated agricultural soils: Correlations between soil contamination and polymetallic mining activity. Journal of Environmental Management, 2021, 300, 113679.	3.8	28
40	Synergistic effects of ball-milled biochar-supported exfoliated LDHs on phosphate adsorption: Insights into role of fine biochar support. Environmental Pollution, 2022, 294, 118592.	3.7	27
41	Input–output balance of cadmium in typical agriculture soils with historical sewage irrigation in China. Journal of Environmental Management, 2020, 276, 111298.	3.8	26
42	Perfluorooctanoic acid triggers oxidative stress in anaerobic digestion of sewage sludge. Journal of Hazardous Materials, 2022, 424, 127418.	6.5	24
43	The Fe3O4-modified biochar reduces arsenic availability in soil and arsenic accumulation in indica rice (Oryza sativa L.). Environmental Science and Pollution Research, 2021, 28, 18050-18061.	2.7	22
44	Ball-milled, solvent-free Sn-functionalisation of wood waste biochar for sugar conversion in food waste valorisation. Journal of Cleaner Production, 2020, 268, 122300.	4.6	20
45	Exploring the linkage between free nitrous acid accumulation and nitrous oxide emissions in a novel static/oxic/anoxic process. Bioresource Technology, 2020, 304, 123011.	4.8	19
46	Rice husk-derived biochar can aggravate arsenic mobility in ferrous-rich groundwater during oxygenation. Water Research, 2021, 200, 117264.	5.3	17
47	Biochar and nitrogen fertilizer co-application changed SOC content and fraction composition in Huang-Huai-Hai plain, China. Chemosphere, 2022, 291, 132925.	4.2	17
48	Ball-milled magnetite for efficient arsenic decontamination: Insights into oxidation–adsorption mechanism. Journal of Hazardous Materials, 2022, 427, 128117.	6.5	16
49	Thallium geochemical fractionation and migration in Tl-As rich soils: The key controls. Science of the Total Environment, 2021, 784, 146995.	3.9	14
50	Conversion of biochar to sulfonated solid acid catalysts for spiramycin hydrolysis: Insights into the sulfonation process. Environmental Research, 2020, 188, 109887.	3.7	13
51	Influence of chlortetracycline as an antibiotic residue on nitrous oxide emissions from wastewater treatment. Bioresource Technology, 2020, 313, 123696.	4.8	12
52	Triclosan facilitates the recovery of volatile fatty acids from waste activated sludge. Science of the Total Environment, 2021, 754, 142336.	3.9	12
53	A novel high surface area spherical carbon from cassava starch. Materials Letters, 2015, 139, 262-264.	1.3	10
54	Unveiling the different faces of chlortetracycline in fermentative volatile fatty acid production from waste activated sludge. Bioresource Technology, 2021, 329, 124875.	4.8	9

#	Article	IF	CITATIONS
55	Distribution and migration characteristics of dinitrotoluene sulfonates (DNTs) in typical TNT production sites: Effects and health risk assessment. Journal of Environmental Management, 2021, 287, 112342.	3.8	9
56	Simultaneous immobilization of arsenic and cadmium in paddy soil by Fe-Mn binary oxide. Elementa, 2020, 8, .	1.1	8
57	Evaluation of arsenic mineralogy and geochemistry in gold mine-impacted matrices: Speciation, transformation, and potential associated risks. Journal of Environmental Management, 2022, 308, 114619.	3.8	5
58	Enhanced delivery of engineered Fe-Mn binary oxides in heterogeneous porous media for efficient arsenic stabilization. Journal of Hazardous Materials, 2022, 424, 127371.	6.5	4
59	Potential hot spots contaminated with exogenous, rare earth elements originating from e-waste dismantling and recycling. Environmental Pollution, 2022, 309, 119717.	3.7	3
60	Fabricate hollow Ag–POMs microtubule by a simple process. Materials Letters, 2015, 141, 128-131.	1.3	2
61	Modeling nitrous oxide emissions in membrane bioreactors: Advancements, challenges and perspectives. Science of the Total Environment, 2021, 806, 151394.	3.9	2
62	Comprehensive understanding of guest compound intercalated layered double hydroxides: Design and applications in removal of potentially toxic elements. Critical Reviews in Environmental Science and Technology, 2023, 53, 457-482.	6.6	2
63	Theoretical Modeling and Simulations of Magnetic Fluids in Gradient Magnetic Fields. Advanced Materials Research, 0, 146-147, 1510-1513.	0.3	0
64	Influence of the Magnetic Interaction among Particles on Distributions of Magnetic Fluids Using Computer Simulations. Advanced Materials Research, 0, 150-151, 1595-1598.	0.3	0
65	Biochar for remediation of alkaline soils contaminated with toxic elements. , 2022, , 223-240.		0