Seema Ansari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2543847/publications.pdf

Version: 2024-02-01

623734 677142 1,255 24 14 22 h-index citations g-index papers 24 24 24 1815 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Early Detection and Parameter Estimation of Tongue Tumour Using Contact Thermometry in a Closed Mouth. International Journal of Thermophysics, 2022, 43, 1.	2.1	1
2	Cashew Nut Shell Derived Porous Activated Carbon Electrodes for "Waterâ€inâ€Saltâ€Electrolyte Based Symmetric Supercapacitor. ChemistrySelect, 2022, 7, .	1.5	4
3	High dielectric constant, flexible and easy-processable calcium copper titanate/thermoplastic polyurethane (CCTO/TPU) composites through simple casting method. Journal of Materials Science: Materials in Electronics, 2021, 32, 5908-5919.	2.2	9
4	Biomassâ€Derived Activated Carbon for Highâ€Performance Supercapacitor Electrode Applications. Chemical Engineering and Technology, 2021, 44, 844-851.	1.5	22
5	Breast tumor parameter estimation and interactive 3D thermal tomography using discrete thermal sensor data. Biomedical Physics and Engineering Express, 2021, 7, 015013.	1.2	4
6	Self-Discharge and Voltage Recovery in Graphene Supercapacitors. IEEE Transactions on Power Electronics, 2018, 33, 10410-10418.	7.9	52
7	Optically triggered actuation in chitosan/reduced graphene oxide nanocomposites. Carbohydrate Polymers, 2016, 144, 115-121.	10.2	22
8	Optical limiting properties of in situ reduced graphene oxide/polymer nanocomposites. Materials Chemistry and Physics, 2016, 171, 367-373.	4.0	24
9	Tween 80 Modified Graphene with Improved Processability for the Fabrication of Supercapacitors. Materials and Manufacturing Processes, 2013, 28, 1253-1259.	4.7	10
10	Effect of Cu and Fe addition on electrical properties of Ni–Mn–Co–O NTC thermistor compositions. Ceramics International, 2012, 38, 6481-6486.	4.8	71
11	Optimization of process parameters for the production of Ni–Mn–Co–Fe based NTC chip thermistors through tape casting route. Journal of Alloys and Compounds, 2011, 509, 9363-9371.	5.5	42
12	Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties. Polymer, 2010, 51, 469-474.	3.8	52
13	Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydrate Polymers, 2010, 79, 391-396.	10.2	215
14	Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets. Small, 2010, 6, 205-209.	10.0	143
15	Ni–Mn–Fe–Cr–O negative temperature coefficient thermistor compositions: Correlation between processing conditions and electrical characteristics. Journal of Electroceramics, 2009, 22, 436-441.	2.0	26
16	Functionalized graphene sheetâ€"Poly(vinylidene fluoride) conductive nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 888-897.	2.1	421
17	Tape casting of nickel manganite NTC ceramics for chip thermistors. Journal of Materials Science: Materials in Electronics, 2008, 19, 1100-1104.	2.2	10
18	Microstructural, electrical and reliability aspects of chromium doped Ni–Mn–Fe–O NTC thermistor materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 47-52.	3.5	52

#	ARTICLE	IF	CITATION
19	PVDF-PZT-5H composites prepared by hot press and tape casting techniques. Journal of Applied Polymer Science, 2007, 106, 146-151.	2.6	46
20	Thermal Degradation of Short Nylon-6 Fiber–Reinforced Styrene Butadiene Rubber Composite. International Journal of Polymeric Materials and Polymeric Biomaterials, 2006, 55, 25-35.	3.4	7
21	Effect of an epoxy-based bonding agent on the cure characteristics and mechanical properties of short-nylon-fiber-reinforced acrylonitrile-butadiene rubber composites. Journal of Applied Polymer Science, 2006, 99, 532-539.	2.6	16
22	Characterization of Short Nylon-6 Fiber/Acrylonitrile Butadiene Rubber Composite by Thermogravimetry. International Journal of Polymer Analysis and Characterization, 2005, 10, 169-178.	1.9	0
23	Rheology of Short Nylon-6 Fiber Reinforced Styrene-Butadiene Rubber. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 933-948.	3.4	4
24	Rheological Characteristics of Short Nylon-6 Fiber Reinforced Styrene Butadiene Rubber Containing Epoxy Resin as Bonding Agent. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 1031-1045.	3.4	2