Leonard I Wassenaar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/254380/leonard-i-wassenaar-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 232
 10,465
 52
 92

 papers
 citations
 h-index
 g-index

 243
 11,654
 4.2
 6.49

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
232	Assessment of rapid low-cost isotope (d N, d O) analyses of nitrate in fruit extracts by Ti (III) reduction to differentiate organic from conventional production <i>Rapid Communications in Mass Spectrometry</i> , 2022 , e9259	2.2	
231	Nitrate sources and mixing in the Danube watershed: implications for transboundary river basin monitoring and management <i>Scientific Reports</i> , 2022 , 12, 2150	4.9	1
230	Influence of equilibration time, soil texture, and saturation on the accuracy of porewater water isotope assays using the direct H2O(liquid)-H2O(vapor) equilibration method. <i>Journal of Hydrology</i> , 2022 , 127560	6	1
229	Isotopic composition (115N, 118O) of nitrate in high-frequency precipitation events differentiate atmospheric processes and anthropogenic NOx emissions. <i>Atmospheric Research</i> , 2022 , 267, 105971	5.4	3
228	Experimental Evaluation of 2 H, 1 3C and 1 5N Variability in Blood and Feathers of Wild and Captive Birds: Implications for Interspecific Food Web Studies. <i>Diversity</i> , 2021 , 13, 495	2.5	O
227	Principles and uncertainties of C age estimations for groundwater transport and resource evaluation. <i>Isotopes in Environmental and Health Studies</i> , 2021 , 57, 111-141	1.5	0
226	The Pulse of the Amazon: Fluxes of Dissolved Organic Carbon, Nutrients, and Ions From the World's Largest River. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2020GB006895	5.9	3
225	Compound-specific stable hydrogen isotope (IH) analyses of fatty acids: A new method and perspectives for trophic and movement ecology. <i>Rapid Communications in Mass Spectrometry</i> , 2021 , 35, e9135	2.2	4
224	Improved high-resolution global and regionalized isoscapes of 🛮 80, 🗓 H and d-excess in precipitation. <i>Hydrological Processes</i> , 2021 , 35, e14254	3.3	9
223	Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading. <i>Communications Earth & Environment</i> , 2021 , 2,	6.1	10
222	Performance of low-cost stainless-steel beverage kegs for long-term storage integrity and easy dispensing of water isotope (ID, IH) reference materials. <i>Rapid Communications in Mass Spectrometry</i> , 2021 , 35, e9164	2.2	1
221	Temperature and precipitation effects on the isotopic composition of global precipitation reveal long-term climate dynamics. <i>Scientific Reports</i> , 2021 , 11, 18503	4.9	5
220	Progress and challenges in dual- and triple-isotope (ID, IH, ID) analyses of environmental waters: An international assessment of laboratory performance. <i>Rapid Communications in Mass Spectrometry</i> , 2021 , 35, e9193	2.2	2
219	Distinguishing in-cloud and below-cloud short and distal N-sources from high-temporal resolution seasonal nitrate and ammonium deposition in Vienna, Austria. <i>Atmospheric Environment</i> , 2021 , 266, 118	75430	2
218	Comparative evaluation of H- versus H-based enrichment factor determination on the uncertainty and accuracy of low-level tritium analyses of environmental waters. <i>Applied Radiation and Isotopes</i> , 2021 , 176, 109850	1.7	O
217	Stable isotopes in global lakes integrate catchment and climatic controls on evaporation. <i>Nature Communications</i> , 2021 , 12, 7224	17.4	6
216	Stable isotope fractionations in the evaporation of water: The wind effect. <i>Hydrological Processes</i> , 2020 , 34, 3596-3607	3.3	5

(2018-2020)

215	Proficiency testing of 78 international laboratories measuring tritium in environmental waters by decay counting and mass spectrometry for age dating and water resources assessment. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34, e8832	2.2	3
214	The first IAEA inter-laboratory comparison exercise in Latin America and the Caribbean for stable isotope analyses of water samples. <i>Isotopes in Environmental and Health Studies</i> , 2020 , 56, 391-401	1.5	3
213	Small-scale chemical and isotopic variability of hydrological pathways in a mountain lake catchment. <i>Journal of Hydrology</i> , 2020 , 585, 124834	6	11
212	The Use of Stable Isotopic Analyses to Identify Pulp Mill Effluent Signatures in Riverine Food Webs 2020 , 413-423		1
211	60-year trends of 🛮 80 in global precipitation reveal large scale hydroclimatic variations. <i>Global and Planetary Change</i> , 2020 , 195, 103335	4.2	11
210	Introduction to Conducting Stable Isotope Measurements for Animal Migration Studies 2019 , 25-51		11
209	A Ti(III) reduction method for one-step conversion of seawater and freshwater nitrate into N O for stable isotopic analysis of N/N, O/O and O/O. <i>Rapid Communications in Mass Spectrometry</i> , 2019 , 33, 1227-1239	2.2	23
208	Isoscape Computation and Inference of Spatial Origins With Mixed Models Using the R package IsoriX 2019 , 207-236		12
207	Outlook for Using Stable Isotopes in Animal Migration Studies 2019 , 237-244		3
206	Spatio-temporal variation of nitrate sources to Lake Winnipeg using N and O isotope (N, D) analyses. <i>Science of the Total Environment</i> , 2019 , 647, 486-493	10.2	35
206		10.2	35 O
	analyses. <i>Science of the Total Environment</i> , 2019 , 647, 486-493 14C chronology and stable isotopes on Lymnaea viatrix shells in northwest Patagonia, Argentina.		
205	analyses. Science of the Total Environment, 2019, 647, 486-493 14C chronology and stable isotopes on Lymnaea viatrix shells in northwest Patagonia, Argentina. Do they express the Antarctic climatic reversal?. Carbonates and Evaporites, 2019, 34, 133-142 Stable isotope patterns reveal widespread rainy-period-biased recharge in phreatic aquifers across	1.3	0
205	analyses. Science of the Total Environment, 2019, 647, 486-493 14C chronology and stable isotopes on Lymnaea viatrix shells in northwest Patagonia, Argentina. Do they express the Antarctic climatic reversal?. Carbonates and Evaporites, 2019, 34, 133-142 Stable isotope patterns reveal widespread rainy-period-biased recharge in phreatic aquifers across Greece. Journal of Hydrology, 2019, 568, 1081-1092 Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry. Rapid Communications in Mass	1.3	0
205	analyses. Science of the Total Environment, 2019, 647, 486-493 14C chronology and stable isotopes on Lymnaea viatrix shells in northwest Patagonia, Argentina. Do they express the Antarctic climatic reversal?. Carbonates and Evaporites, 2019, 34, 133-142 Stable isotope patterns reveal widespread rainy-period-biased recharge in phreatic aquifers across Greece. Journal of Hydrology, 2019, 568, 1081-1092 Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 393-406 A laboratory information management system for the analysis of tritium (H) in environmental	1.3	0 10 37
205 204 203 202	analyses. Science of the Total Environment, 2019, 647, 486-493 14C chronology and stable isotopes on Lymnaea viatrix shells in northwest Patagonia, Argentina. Do they express the Antarctic climatic reversal?. Carbonates and Evaporites, 2019, 34, 133-142 Stable isotope patterns reveal widespread rainy-period-biased recharge in phreatic aquifers across Greece. Journal of Hydrology, 2019, 568, 1081-1092 Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 393-406 A laboratory information management system for the analysis of tritium (H) in environmental waters. Applied Radiation and Isotopes, 2018, 137, 139-146 Patterns of parasitism in monarch butterflies during the breeding season in eastern North America.	1.3 6 2.2	o 10 37 3
205 204 203 202 201	analyses. Science of the Total Environment, 2019, 647, 486-493 14C chronology and stable isotopes on Lymnaea viatrix shells in northwest Patagonia, Argentina. Do they express the Antarctic climatic reversal?. Carbonates and Evaporites, 2019, 34, 133-142 Stable isotope patterns reveal widespread rainy-period-biased recharge in phreatic aquifers across Greece. Journal of Hydrology, 2019, 568, 1081-1092 Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 393-406 A laboratory information management system for the analysis of tritium (H) in environmental waters. Applied Radiation and Isotopes, 2018, 137, 139-146 Patterns of parasitism in monarch butterflies during the breeding season in eastern North America. Ecological Entomology, 2018, 43, 28-36 High-frequency NO ₃ ^{isotope (<i></i>} 180)	1.3 6 2.2 1.7 2.1	o 10 37 3 11

197	Correcting for Biogenic Gas Matrix Effects on Laser-Based Pore Water-Vapor Stable Isotope Measurements. <i>Vadose Zone Journal</i> , 2018 , 17, 170157	2.7	16
196	Geographic origin and migration phenology of European red admirals () as revealed by stable isotopes. <i>Movement Ecology</i> , 2018 , 6, 25	4.6	4
195	Assessing the fate of explosives derived nitrate in mine waste rock dumps using the stable isotopes of oxygen and nitrogen. <i>Science of the Total Environment</i> , 2018 , 640-641, 127-137	10.2	12
194	A unified Craig-Gordon isotope model of stable hydrogen and oxygen isotope fractionation during fresh or saltwater evaporation. <i>Geochimica Et Cosmochimica Acta</i> , 2018 , 235, 224-236	5.5	29
193	Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years. <i>Global Change Biology</i> , 2017 , 23, 2565-2576	11.4	63
192	Re-evaluation of the hydrogen stable isotopic composition of keratin calibration standards for wildlife and forensic science applications. <i>Rapid Communications in Mass Spectrometry</i> , 2017 , 31, 1193-1	203	57
191	Isotopic evidence for widespread cold-season-biased groundwater recharge and young streamflow across central Canada. <i>Hydrological Processes</i> , 2017 , 31, 2196-2209	3.3	45
190	Migration distance as a selective episode for wing morphology in a migratory insect. <i>Movement Ecology</i> , 2017 , 5, 7	4.6	23
189	Possible linkage between neuronal recruitment and flight distance in migratory birds. <i>Scientific Reports</i> , 2016 , 6, 21983	4.9	17
188	Correcting Laser-Based Water Stable Isotope Readings Biased by Carrier Gas Changes. <i>Environmental Science & Environmental Sci</i>	10.3	20
187	Differential migration and the link between winter latitude, timing of migration, and breeding in a songbird. <i>Oecologia</i> , 2016 , 181, 413-22	2.9	42
186	American woodcock migratory connectivity as indicated by hydrogen isotopes. <i>Journal of Wildlife Management</i> , 2016 , 80, 510-526	1.9	9
185	Measurement of extremely (2) H-enriched water samples by laser spectrometry: application to batch electrolytic concentration of environmental tritium samples. <i>Rapid Communications in Mass Spectrometry</i> , 2016 , 30, 415-22	2.2	9
184	Using hydrogen isotopes of freshwater fish tissue as a tracer of provenance. <i>Ecology and Evolution</i> , 2016 , 6, 7776-7782	2.8	9
183	Precipitation isoscapes for New Zealand: enhanced temporal detail using precipitation-weighted daily climatology. <i>Isotopes in Environmental and Health Studies</i> , 2016 , 52, 343-52	1.5	15
182	A compact tritium enrichment unit for large sample volumes with automated re-filling and higher enrichment factor. <i>Applied Radiation and Isotopes</i> , 2016 , 118, 80-86	1.7	5
181	Prey consumption and trace element concentrations in double-crested cormorants (Phalacrocorax auritus) from Lake Winnipeg, Canada. <i>Journal of Great Lakes Research</i> , 2015 , 41, 643-651	3	4
180	LIMS for Lasers 2015 for achieving long-term accuracy and precision of (P)H, (17)O, and (18)O of waters using laser absorption spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2015 , 29, 2127	2 2 30	43

(2013-2015)

179	Space-time tradeoffs in the development of precipitation-based isoscape models for determining migratory origin. <i>Journal of Avian Biology</i> , 2015 , 46, 658-667	1.9	15	
178	Can argillaceous formations isolate nuclear waste? Insights from isotopic, noble gas, and geochemical profiles. <i>Geofluids</i> , 2015 , 15, 381-386	1.5	29	
177	A new isotopic reference material for stable hydrogen and oxygen isotope-ratio measurements of water - USGS50 Lake Kyoga Water. <i>Rapid Communications in Mass Spectrometry</i> , 2015 , 29, 2078-82	2.2	3	
176	Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method. <i>Hydrology and Earth System Sciences</i> , 2015 , 19, 4427-4440	5.5	44	
175	Do Healthy Monarchs Migrate Farther? Tracking Natal Origins of Parasitized vs. Uninfected Monarch Butterflies Overwintering in Mexico. <i>PLoS ONE</i> , 2015 , 10, e0141371	3.7	52	
174	The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research. <i>Hydrology and Earth System Sciences</i> , 2015 , 19, 3419-3431	5.5	70	
173	The efficacy of scale sampling for monitoring trace element concentrations and stable isotopes in commercially harvested walleye (Sander vitreus). <i>Isotopes in Environmental and Health Studies</i> , 2015 , 51, 359-71	1.5	1	
172	An online temperature-controlled vacuum-equilibration preparation system for the measurement of IdH values of non-exchangeable-H and of IdBO values in organic materials by isotope-ratio mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2015 , 29, 397-407	2.2	31	
171	Sensitivity of structural and functional indicators depends on type and resolution of anthropogenic activities. <i>Ecological Indicators</i> , 2014 , 45, 274-284	5.8	22	
170	No evidence for assortative mating within a willow warbler migratory divide. <i>Frontiers in Zoology</i> , 2014 , 11, 52	2.8	9	
169	Comparison of methods for stable isotope ratio (13C, 15N, 12H, 18O) measurements of feathers. <i>Methods in Ecology and Evolution</i> , 2014 , 5, 363-371	7.7	12	
168	Contrasting assignment of migratory organisms to geographic origins using long-term versus year-specific precipitation isotope maps. <i>Methods in Ecology and Evolution</i> , 2014 , 5, 891-900	7.7	34	
167	Defining fish community structure in Lake Winnipeg using stable isotopes ((113)C, (115)N, (B4)S): implications for monitoring ecological responses and trophodynamics of mercury & other trace elements. Science of the Total Environment, 2014, 497-498, 239-249	10.2	41	
166	Approaches for achieving long-term accuracy and precision of II8O and IIH for waters analyzed using laser absorption spectrometers. <i>Environmental Science & Environmental Sci</i>	10.3	56	
165	Inferring the ecology of willow warblers during their winter moult by sequential stable isotope analyses of remiges. <i>Journal of Avian Biology</i> , 2013 , 44, 561-566	1.9	3	
164	The influence of metabolic effects on stable hydrogen isotopes in tissues of aquatic organisms. <i>Isotopes in Environmental and Health Studies</i> , 2013 , 49, 305-11	1.5	13	
163	Stable hydrogen and oxygen isotopes in aquatic food webs are tracers of diet and provenance. <i>Functional Ecology</i> , 2013 , 27, 535-543	5.6	67	
162	An Appraisal of the Use of Hydrogen-Isotope Methods to Delineate Origins of Migratory Saw-whet Owls in North America. <i>Condor</i> , 2013 , 115, 366-374	2.1	9	

161	An exploration of migratory connectivity of the Rufous Hummingbird (Selasphorus rufus), using feather deuterium. <i>Journal of Ornithology</i> , 2013 , 154, 423-430	1.5	7
160	Tracking multi-generational colonization of the breeding grounds by monarch butterflies in eastern North America. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2013 , 280, 20131087	4.4	103
159	Conservation through connectivity: can isotopic gradients in Africa reveal winter quarters of a migratory bird?. <i>Oecologia</i> , 2013 , 171, 591-600	2.9	21
158	Hydrogen isotope variability in prairie wetland systems: implications for studies of migratory connectivity 2013 , 23, 110-21		13
157	Critique: measuring hydrogen stable isotope abundance of proteins to infer origins of wildlife, food and people. <i>Bioanalysis</i> , 2013 , 5, 751-67	2.1	59
156	Measurement of stable isotope activities in saline aqueous solutions using optical spectroscopy methods. <i>Isotopes in Environmental and Health Studies</i> , 2013 , 49, 378-86	1.5	14
155	Paleohydrogeology of the Cretaceous sediments of the Williston Basin using stable isotopes of water. <i>Water Resources Research</i> , 2013 , 49, 4580-4592	5.4	56
154	Global isoscapes for ¹⁸O and ²H in precipitation: improved prediction using regionalized climatic regression models. <i>Hydrology and Earth System Sciences</i> , 2013 , 17, 4713-4728	5.5	147
153	The influence of metabolic rate on the contribution of stable-hydrogen and oxygen isotopes in drinking water to quail blood plasma and feathers. <i>Functional Ecology</i> , 2012 , 26, 1111-1119	5.6	9
152	In situ experiment to determine advective-diffusive controls on solute transport in a clay-rich aquitard. <i>Journal of Contaminant Hydrology</i> , 2012 , 131, 79-88	3.9	15
151	A dragonfly (②H) isoscape for North America: a new tool for determining natal origins of migratory aquatic emergent insects. <i>Methods in Ecology and Evolution</i> , 2012 , 3, 766-772	7.7	42
150	Connecting breeding and wintering habitats of migratory piscivorous birds: implications for tracking contaminants (Hg) using multiple stable isotopes. <i>Environmental Science & Environmental Science </i>	10.3	31
149	Determination of the hydrogen isotopic compositions of organic materials and hydrous minerals using thermal combustion laser spectroscopy. <i>Analytical Chemistry</i> , 2012 , 84, 3640-5	7.8	12
148	Stable-hydrogen isotope measures of natal dispersal reflect observed population declines in a threatened migratory songbird. <i>Diversity and Distributions</i> , 2012 , 18, 919-930	5	29
147	Rates of microbial elemental sulfur oxidation and 18O and 34S isotopic fractionation under varied nutrient and temperature regimes. <i>Applied Geochemistry</i> , 2012 , 27, 186-196	3.5	7
146	An isotopic baseline (13C, 15N) for fishes of Lake Winnipeg: Implications for investigating impacts of eutrophication and invasive species. <i>Journal of Great Lakes Research</i> , 2012, 38, 58-65	3	29
145	Dissolved oxygen status of Lake Winnipeg: Spatio-temporal and isotopic (1801) patterns. Journal of Great Lakes Research, 2012 , 38, 123-134	3	19
144	Numerical modeling of hydrodynamics and tracer dispersion during ice-free period in Lake Winnipeg. <i>Journal of Great Lakes Research</i> , 2012 , 38, 147-157	3	18

143	A geostatistical approach to optimize water quality monitoring networks in large lakes: Application to Lake Winnipeg. <i>Journal of Great Lakes Research</i> , 2012 , 38, 174-182	3	23
142	Isotopic characterization of nitrate sources and transformations in Lake Winnipeg and its contributing rivers, Manitoba, Canada. <i>Journal of Great Lakes Research</i> , 2012 , 38, 135-146	3	28
141	Lake Winnipeg: The forgotten great lake. Journal of Great Lakes Research, 2012, 38, 1-5	3	20
140	A triple-isotope approach to predict the breeding origins of European bats. <i>PLoS ONE</i> , 2012 , 7, e30388	3.7	45
139	Linking hydrogen (QH) isotopes in feathers and precipitation: sources of variance and consequences for assignment to isoscapes. <i>PLoS ONE</i> , 2012 , 7, e35137	3.7	117
138	Solving a migration riddle using isoscapes: house martins from a Dutch village winter over West Africa. <i>PLoS ONE</i> , 2012 , 7, e45005	3.7	10
137	Migratory connectivity of the monarch butterfly (Danaus plexippus): patterns of spring re-colonization in eastern North America. <i>PLoS ONE</i> , 2012 , 7, e31891	3.7	35
136	Isotopic evidence that dragonflies (Pantala flavescens) migrating through the Maldives come from the northern Indian subcontinent. <i>PLoS ONE</i> , 2012 , 7, e52594	3.7	49
135	Technical Note: Evaluation of between-sample memory effects in the analysis of ²H and ¹⁸O of water samples measured by laser spectroscopes. <i>Hydrology and Earth System Sciences</i> , 2012 , 16, 3925-3933	5.5	56
134	A feather-precipitation hydrogen isoscape model for New Zealand: implications for eco-forensics. <i>Ecosphere</i> , 2012 , 3, art62	3.1	5
133	Worldwide proficiency test for routine analysis of <code>2H</code> and <code>18O</code> in water by isotope-ratio mass spectrometry and laser absorption spectroscopy. <i>Rapid Communications in Mass Spectrometry</i> , 2012 , 26, 1641-8	2.2	38
132	Factors influencing the turnover and net isotopic discrimination of hydrogen isotopes in proteinaceous tissue: experimental results using Japanese quail. <i>Physiological and Biochemical Zoology</i> , 2012 , 85, 376-84	2	10
131	A multi-isotope (13C, 15N, 2H) feather isoscape to assign Afrotropical migrant birds to origins. <i>Ecosphere</i> , 2012 , 3, art44	3.1	62
130	Controls on the long-term downward transport of IH of water in a regionally extensive, two-layered aquitard system. <i>Water Resources Research</i> , 2011 , 47,	5.4	27
129	Costs and benefits of natal dispersal in yearling mallards Anas platyrhynchos. <i>Journal of Avian Biology</i> , 2011 , 42, 123-133	1.9	3
128	Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada. <i>Journal of Hydrology</i> , 2011 , 411, 37-48	6	114
127	Assessing waterbird habitat use in coastal evaporative systems using stable isotopes (113C, 115N and 10) as environmental tracers. <i>Estuarine, Coastal and Shelf Science</i> , 2011 , 92, 217-222	2.9	14
126	Effects of size and diet on stable hydrogen isotope values (D) in fish: implications for tracing origins of individuals and their food sources. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2011 68 2011-2019	2.4	30

125	Millennial-scale diffusive migration of solutes in thick clay-rich aquitards: evidence from multiple environmental tracers. <i>Hydrogeology Journal</i> , 2011 , 19, 259-270	3.1	24
124	Social and habitat correlates of immigrant recruitment of yearling female Mallards to breeding locations. <i>Journal of Ornithology</i> , 2011 , 152, 781-791	1.5	5
123	Improved online 180 measurements of nitrogen- and sulfur-bearing organic materials and a proposed analytical protocol. <i>Rapid Communications in Mass Spectrometry</i> , 2011 , 25, 2049-58	2.2	36
122	Correcting for methane interferences on IIH and II8O measurements in pore water using H2Oliquid-H2Ovapor equilibration laser spectroscopy. <i>Analytical Chemistry</i> , 2011 , 83, 5789-96	7.8	26
121	Realtime stable isotope monitoring of natural waters by parallel-flow laser spectroscopy. <i>Analytical Chemistry</i> , 2011 , 83, 913-9	7.8	19
120	Tracing waterbird exposure to total mercury and selenium: a case study at the solar saltworks of Thyna (sfax, Tunisia). <i>Environmental Science & Environmental Science & Envir</i>	10.3	6
119	Monarch butterflies cross the Appalachians from the west to recolonize the east coast of North America. <i>Biology Letters</i> , 2011 , 7, 43-6	3.6	24
118	Tracking cats: problems with placing feline carnivores on D, D isoscapes. <i>PLoS ONE</i> , 2011 , 6, e24601	3.7	41
117	Migratory connectivity in a declining bird species: using feather isotopes to inform demographic modelling. <i>Diversity and Distributions</i> , 2010 , 16, 643-654	5	13
116	Understanding the migration ecology of European red admirals Vanessa atalanta using stable hydrogen isotopes. <i>Ecography</i> , 2010 , 33, 720-729	6.5	30
115	Aquatic community metabolism response to municipal effluent inputs in rivers quantified using diel 180 values of dissolved oxygen. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2010 , 67, 1232-1246	2.4	21
114	The stable isotopic composition (37Cl/35Cl) of dissolved chloride in rainwater. <i>Applied Geochemistry</i> , 2010 , 25, 91-96	3.5	29
113	Origins of American Kestrels Wintering at Two Southern U.S. Sites: An Investigation Using Stable-Isotope (D, 180) Methods. <i>Journal of Raptor Research</i> , 2009 , 43, 325-337	0.9	20
112	Temporal Sources of Deuterium (D) Variability in Waterfowl Feathers Across a Prairie-to-Boreal Gradient. <i>Condor</i> , 2009 , 111, 255-265	2.1	16
111	Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities. <i>Science of the Total Environment</i> , 2009 , 407, 3307-16	10.2	58
110	Cl/Br ratios and stable chlorine isotope analysis of magmaticflydrothermal fluid inclusions from Butte, Montana and Bingham Canyon, Utah. <i>Mineralium Deposita</i> , 2009 , 44, 837-848	4.8	30
109	A test of comparative equilibration for determining non-exchangeable stable hydrogen isotope values in complex organic materials. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 2316-20	2.2	39
108	Stable isotopes (D) delineate the origins and migratory connectivity of harvested animals: the case of European woodpigeons. <i>Journal of Applied Ecology</i> , 2009 , 46, 572-581	5.8	61

(2008-2009)

107	Does a lack of design and repeatability compromise scientific criticism? A response to Smith et al. (2009). <i>Auk</i> , 2009 , 126, 922-926	2.1	14
106	A comparision of laboratory and field based determinations of molecular diffusion coefficients in a low permeability geologic medium. <i>Environmental Science & Environmental S</i>	10.3	19
105	A groundwater isoscape (D , 1 80) for Mexico. <i>Journal of Geochemical Exploration</i> , 2009 , 102, 123-136	3.8	123
104	A feather hydrogen isoscape for Mexico. <i>Journal of Geochemical Exploration</i> , 2009 , 102, 63-70	3.8	12
103	A feather hydrogen isoscape for Mexico. Journal of Geochemical Exploration, 2009, 102, 167-174	3.8	10
102	Corrigendum Geographic variation in the isotopic (D, 🛮 3C, 🖺 5N, 🖰 4S) composition of feathers and claws from lesser scaup and northern pintail: implications for studies of migratory connectivity. <i>Canadian Journal of Zoology</i> , 2009 , 87, 553-554	1.5	14
101	Stable hydrogen isotope (D) values in songbird nestlings: effects of diet, temperature, and body size. <i>Canadian Journal of Zoology</i> , 2009 , 87, 767-772	1.5	14
100	Inferring heterogeneity in aquitards using high-resolution deltaD and delta18O profiles. <i>Ground Water</i> , 2009 , 47, 639-45	2.4	29
99	Spatial and temporal variability of prairie lake hydrology as revealed using stable isotopes of hydrogen and oxygen. <i>Limnology and Oceanography</i> , 2009 , 54, 101-118	4.8	67
98	A method for investigating population declines of migratory birds using stable isotopes: origins of harvested lesser scaup in North America. <i>PLoS ONE</i> , 2009 , 4, e7915	3.7	91
97	Placing butterflies on the map - testing regional geographical resolution of three stable isotopes in Sweden using the monophagus peacockInachis io. <i>Ecography</i> , 2008 , 31, 490-498	6.5	18
96	Stable Isotopes (D, 🛮 3C, 🗓 5N) Reveal Associations Among Geographic Location and Condition of Alaskan Northern Pintails. <i>Journal of Wildlife Management</i> , 2008 , 72, 715-725	1.9	45
95	High resolution pore water delta2H and delta18O measurements by H2O(liquid)-H2O(vapor) equilibration laser spectroscopy. <i>Environmental Science & Environmental Science & Envi</i>	10.3	151
94	An Introduction to Light Stable Isotopes for Use in Terrestrial Animal Migration Studies. <i>Journal of Nano Education (Print)</i> , 2008 , 2, 21-44		29
93	Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events. <i>Geology</i> , 2008 , 36, 683	5	43
92	High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. <i>Analytical Chemistry</i> , 2008 , 80, 287-93	7.8	322
91	Diurnal variations in the photosynthesis-respiration activity of a cyanobacterial bloom in a freshwater dam reservoir: an isotopic study. <i>Isotopes in Environmental and Health Studies</i> , 2008 , 44, 163	- 1 5	6
90	Community-level assessment of the effects of the broad-spectrum antimicrobial chlorhexidine on the outcome of river microbial biofilm development. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 3541-50	4.8	33

89	Aquatic metabolism and ecosystem health assessment using dissolved O2 stable isotope diel curves 2008 , 18, 965-82		36
88	Future Directions and Challenges for Using Stable Isotopes in Advancing Terrestrial Animal Migration Research. <i>Journal of Nano Education (Print)</i> , 2008 , 129-139		6
87	Isotope constraints on water, carbon, and heat fluxes from the northern Great Plains region of North America. <i>Global Biogeochemical Cycles</i> , 2007 , 21, n/a-n/a	5.9	26
86	A Transient Model of Vadose Zone Reaction Rates Using Oxygen Isotopes and Carbon Dioxide. <i>Vadose Zone Journal</i> , 2007 , 6, 67-76	2.7	12
85	Estimating Origins of Three Species of Neotropical Migrant Songbirds at a Gulf Coast Stopover Site: Combining Stable Isotope and Gis Tools. <i>Condor</i> , 2007 , 109, 256-267	2.1	24
84	Dynamics and stable isotope composition of gaseous and dissolved oxygen. <i>Ground Water</i> , 2007 , 45, 447-60	2.4	27
83	Structural and functional responses of river biofilm communities to the nonsteroidal anti-inflammatory diclofenac. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 573-82	3.8	42
82	Dynamics of dissolved oxygen isotopic ratios: a transient model to quantify primary production, community respiration, and air-water exchange in aquatic ecosystems. <i>Oecologia</i> , 2007 , 153, 385-98	2.9	66
81	Estimating Origins of Three Species of Neotropical Migrant Songbirds at a Gulf Coast Stopover Site: Combining Stable Isotope and Gis ToolsSestimacili del Origen de Aves Canoras Migratorias Neotropicales de Tres Especies en un Sitio de Parada en la Costa del Golfo: Una Combinacili de	2.1	20
80	Geographic variation in the isotopic (D, 113C, 115N, 114S) composition of feathers and claws from lesser scaup and northern pintail: implications for studies of migratory connectivity. <i>Canadian Journal of Zoology</i> , 2006 , 84, 1395-1401	1.5	60
79	Using Stable Hydrogen Isotope Analysis of Feathers to Delineate Origins of Harvested Sandhill Cranes in the Central Flyway of North America. <i>Waterbirds</i> , 2006 , 29, 137-147	0.5	30
78	Decadal geochemical and isotopic trends for nitrate in a transboundary aquifer and implications for agricultural beneficial management practices. <i>Environmental Science & Environmental Science & Env</i>	-3 ^{10.3}	80
77	Stable hydrogen isotopes of bison bone collagen as a proxy for Holocene climate on the Northern Great Plains. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 2006 , 239, 87-99	2.9	31
76	Contrasting pathways of assimilation: stable isotope assessment of fish exposure to pulp mill effluents. <i>Journal of Environmental Quality</i> , 2006 , 35, 1884-93	3.4	5
75	Identification of Summer Origins of Songbirds Migrating through Southern Canada in Autumn. <i>Avian Conservation and Ecology</i> , 2006 , 1,	1.5	28
74	Stable-hydrogen isotope heterogeneity in keratinous materials: mass spectrometry and migratory wildlife tissue subsampling strategies. <i>Rapid Communications in Mass Spectrometry</i> , 2006 , 20, 2505-10	2.2	86
73	Holocene variation in the Antarctic coastal food web: linking D and 1 3C in snow petrel diet and marine sediments. <i>Marine Ecology - Progress Series</i> , 2006 , 306, 31-40	2.6	19
72	Origin and migration of dissolved organic carbon fractions in a clay-rich aquitard: 14C and 🛭 3C evidence. Water Resources Research, 2005, 41,	5.4	25

(2004-2005)

71	Stable isotope analyses of feathers help identify autumn stopover sites of three long-distance migrants in northeastern Africa. <i>Journal of Avian Biology</i> , 2005 , 36, 235-241	1.9	24
70	Global application of stable hydrogen and oxygen isotopes to wildlife forensics. <i>Oecologia</i> , 2005 , 143, 337-48	2.9	710
69	Stable isotope and band-encounter analyses delineate migratory patterns and catchment areas of white-throated sparrows at a migration monitoring station. <i>Oecologia</i> , 2005 , 144, 541-9	2.9	45
68	Stable isotopes in ecological studies. <i>Oecologia</i> , 2005 , 144, 517-9	2.9	37
67	Application of Multi-stable Isotope (13C, 15N, 34S, 37Cl) Assays to Assess Spatial Separation of Fish (Longnose Sucker Catostomus catostomus) in an Area Receiving Complex Effluents. <i>Water Quality Research Journal of Canada</i> , 2005 , 40, 275-287	1.7	17
66	STABLE ISOTOPES PROVIDE EVIDENCE FOR POOR NORTHERN PINTAIL PRODUCTION ON THE CANADIAN PRAIRIES. <i>Journal of Wildlife Management</i> , 2005 , 69, 101-109	1.9	17
65	Feather stable isotopes in western North American waterfowl: spatial patterns, underlying factors, and management applications. <i>Wildlife Society Bulletin</i> , 2005 , 33, 92-102	1.4	40
64	Selected papers of the 4th International Conference on Applications of stable Isotope Techniques to Ecological Studies[April 19🛭3, 2004, Wellington, New Zealand. <i>Isotopes in Environmental and Health Studies</i> , 2005 , 41, 1-2	1.5	3
63	Effects of selected pharmaceuticals on riverine biofilm communities. <i>Canadian Journal of Microbiology</i> , 2005 , 51, 655-69	3.2	108
62	Using Isotopic Variance to Detect Long-Distance Dispersal and Philopatry in Birds: An Example with Ovenbirds and American Redstarts. <i>Condor</i> , 2004 , 106, 732-743	2.1	71
61	Migratory Connectivity in Bicknell's Thrush: Locating Missing Populations With Hydrogen Isotopes. <i>Condor</i> , 2004 , 106, 905-909	2.1	28
60	MIGRATORY CONNECTIVITY IN BICKNELL'S THRUSH: LOCATING MISSING POPULATIONS WITH HYDROGEN ISOTOPES. <i>Condor</i> , 2004 , 106, 905	2.1	23
59	Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. <i>Ecology of Freshwater Fish</i> , 2004 , 13, 155-160	2.1	210
58	Estimating endogenous nutrient allocations to reproduction in Redhead Ducks: a dual isotope approach using D and 1 3C measurements of female and egg tissues. <i>Functional Ecology</i> , 2004 , 18, 737-745	5.6	34
57	Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds. <i>Oecologia</i> , 2004 , 141, 477-88	2.9	163
56	Chemical and carbon isotopic composition of dissolved organic carbon in a regional confined methanogenic aquifer. <i>Isotopes in Environmental and Health Studies</i> , 2004 , 40, 103-14	1.5	16
55	Transport and geochemical controls on the distribution of solutes and stable isotopes in a thick clay-rich till aquitard, Canada. <i>Isotopes in Environmental and Health Studies</i> , 2004 , 40, 3-19	1.5	23
54	Using Isotopic Variance to Detect Long-Distance Dispersal and Philopatry in Birds: An Example with Ovenbirds and American Redstarts. <i>Condor</i> , 2004 , 106, 732	2.1	58

53	On-line technique for the determination of the delta37Cl of inorganic and total organic Cl in environmental samples. <i>Analytical Chemistry</i> , 2004 , 76, 6384-8	7.8	29
52	Characterizing the hydrogeology of a complex clay-rich aquitard system using detailed vertical profiles of the stable isotopes of water. <i>Journal of Hydrology</i> , 2004 , 293, 47-56	6	45
51	DO NORTH AMERICAN MONARCH BUTTERFLIES TRAVEL TO CUBA? STABLE ISOTOPE AND CHEMICAL TRACER TECHNIQUES 2004 , 14, 1106-1114		39
50	Stable isotopes as indicators of altitudinal distributions and movements in an Ecuadorean hummingbird community. <i>Oecologia</i> , 2003 , 136, 302-8	2.9	126
49	Geochemical and transport properties of dissolved organic carbon in a clay-rich aquitard. <i>Water Resources Research</i> , 2003 , 39,	5.4	36
48	Characterizing geochemical reactions in unsaturated mine waste-rock piles using gaseous O2, CO2, 12CO2, and 13CO2. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	21
47	Microbial respiration and diffusive transport of O2, 16O2, and 18O15O in unsaturated soils and geologic sediments. <i>Environmental Science & Environmental & Environmen</i>	10.3	22
46	Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. <i>Isotopes in Environmental and Health Studies</i> , 2003 , 39, 211-7	1.5	468
45	Selected Papers of the 3rd International Conference on Applications of Stable Isotope Techniques to Ecological Studies. <i>Isotopes in Environmental and Health Studies</i> , 2003 , 39, 1-3	1.5	32
44	Microbial respiration and diffusive transport of O2, 16O2, and 18O16O in unsaturated soils: a mesocosm experiment. <i>Geochimica Et Cosmochimica Acta</i> , 2002 , 66, 3367-3374	5.5	24
43	ISOTOPIC DELINEATION OF NORTH AMERICAN MIGRATORY WILDLIFE POPULATIONS: LOGGERHEAD SHRIKES 2001 , 11, 1545-1553		45
42	A stable carbon and nitrogen isotope study of lake food webs in Canadall Boreal Plain. <i>Freshwater Biology</i> , 2001 , 46, 465-477	3.1	52
41	Stable Isotopes (180, 2H) of Pore Waters in Clay-Rich Aquitards: A Comparison and Evaluation of Measurement Techniques. <i>Ground Water Monitoring and Remediation</i> , 2001 , 21, 108-116	1.4	26
40	Stable nitrogen isotopes in waterfowl feathers reflect agricultural land use in western Canada. <i>Environmental Science & Environmental Science & Envir</i>	10.3	87
39	A stable-isotope approach to delineate geographical catchment areas of avian migration monitoring stations in North America. <i>Environmental Science & Environmental Science & </i>	10.3	96
38	Linking Breeding and Wintering Grounds of Bicknell's Thrushes Using Stable Isotope Analyses of Feathers. <i>Auk</i> , 2001 , 118, 16-23	2.1	62
37	Mechanisms Controlling the Distribution and Transport of 14C in a Clay-Rich Till Aquitard. <i>Ground Water</i> , 2000 , 38, 343-349	2.4	29
36	Distribution and Biogeochemical Importance of Bacterial Populations in a Thick Clay-Rich Aquitard System. <i>Microbial Ecology</i> , 2000 , 40, 273-291	4.4	29

35	STABLE-CARBON AND HYDROGEN ISOTOPE RATIOS REVEAL BREEDING ORIGINS OF RED-WINGED BLACKBIRDS 2000 , 10, 911-916		102
34	Bacteriogenic Ethane in Near-Surface Aquifers: Implications for Leaking Hydrocarbon Well Bores. <i>Environmental Science & Environmental Science & Envir</i>	10.3	68
33	Improved Method for Determining the Stable-Hydrogen Isotopic Composition (D) of Complex Organic Materials of Environmental Interest. <i>Environmental Science & Environmental </i>	360 ³	157
32	An automated technique for measuring deltaD and delta18O values of porewater by direct CO2 and H2 equilibration. <i>Analytical Chemistry</i> , 2000 , 72, 5659-64	7.8	32
31	Controls on the distribution of major ions in pore waters of a thick surficial aquitard. <i>Water Resources Research</i> , 2000 , 36, 503-513	5.4	67
30	Chloride and chlorine isotopes (36Cl and B7Cl) as tracers of solute migration in a thick, clay-rich aquitard system. <i>Water Resources Research</i> , 2000 , 36, 285-296	5.4	98
29	Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 8003-6	11.5	204
28	Improved Piezometer Construction and Sampling Techniques to Determine Pore Water Chemistry in Aquitards. <i>Ground Water</i> , 1999 , 37, 564-571	2.4	28
27	Stable isotope ecology: an introduction. <i>Oecologia</i> , 1999 , 120, 312-313	2.9	65
26	Individual specialization and trophic adaptability of northern pike (Esox lucius): an isotope and dietary analysis. <i>Oecologia</i> , 1999 , 120, 386-396	2.9	149
25	Stable isotopes (D and C) are geographic indicators of natal origins of monarch butterflies in eastern North America. <i>Oecologia</i> , 1999 , 120, 397-404	2.9	166
24	An On-Line Technique for the Determination of the [18]O and [17]O of Gaseous and Dissolved Oxygen. <i>Analytical Chemistry</i> , 1999 , 71, 4965-8	7.8	65
23	Implications of the distribution of \mathbf{D} in pore waters for groundwater flow and the timing of geologic events in a thick aquitard system. <i>Water Resources Research</i> , 1999 , 35, 1751-1760	5.4	106
22	Carbon Cycling in Terrestrial Environments 1998 , 577-610		6
21	Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1998 , 95, 154.	3 ¹ 6-9	225
20	Linking breeding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. <i>Oecologia</i> , 1996 , 109, 142-148	2.9	433
19	Origin and structures of groundwater humic substances from three Danish aquifers. <i>Environment International</i> , 1996 , 22, 519-534	12.9	44
18	The Radial Diffusion Method: 1. Using intact cores to determine isotopic composition, chemistry, and effective porosities for groundwater in aquitards. <i>Water Resources Research</i> , 1996 , 32, 1815-1822	5.4	64

17	Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3 [[Applied Geochemistry, 1995, 10, 391-405]	3.5	339
16	Distribution and isotopic characterization of methane in a confined aquifer in southern Ontario, Canada. <i>Journal of Hydrology</i> , 1995 , 173, 51-70	6	35
15	Estimating 14C Groundwater Ages in a Methanogenic Aquifer. Water Resources Research, 1995 , 31, 230	7 <i>=</i> 23/17	93
14	Dissolved organic carbon and methane in a regional confined aquifer, southern Ontario, Canada: Carbon isotope evidence for associated subsurface sources. <i>Applied Geochemistry</i> , 1993 , 8, 483-493	3.5	90
13	Controls on the transport and carbon isotopic composition of dissolved organic carbon in a shallow groundwater system, Central Ontario, Canada. <i>Chemical Geology: Isotope Geoscience Section</i> , 1991 , 87, 39-57		15
12	Radiocarbon and stable isotopes in water and dissolved constituents, Milk River aquifer, Alberta, Canada. <i>Applied Geochemistry</i> , 1991 , 6, 381-392	3.5	30
11	Radiocarbon in Dissolved Organic Carbon, A Possible Groundwater Dating Method: Case Studies From Western Canada. <i>Water Resources Research</i> , 1991 , 27, 1975-1986	5.4	40
10	Isotopic composition (13C, 14C, 2H) and geochemistry of aquatic humic substances from groundwater. <i>Organic Geochemistry</i> , 1990 , 15, 383-396	3.1	51
9	Organic carbon isotope geochemistry of clayey deposits and their associated porewaters, southern Alberta. <i>Journal of Hydrology</i> , 1990 , 120, 251-270	6	19
8	The Geochemistry and Evolution of Natural Organic Solutes in Groundwater. <i>Radiocarbon</i> , 1989 , 31, 865	5- <u>4</u> 8.766	15
7	Isotopic and elemental geochemistry of marine invertebrates from the Late Quaternary Fort Langley Formation and Capilano Sediments, southwestern British Columbia, Canada. <i>Chemical Geology: Isotope Geoscience Section</i> , 1988 , 73, 221-231		3
6	Variation in shell chemistry of terrestrial gastropods (Cerion incanum, Cerion uva, and Tudora maculata) from the Florida Keys and Bonaire. <i>Canadian Journal of Zoology</i> , 1986 , 64, 2399-2404	1.5	5
5	Hydrogen isotopes ($\mathbb P$ H) of polyunsaturated fatty acids track bioconversion by zooplankton. Functional Ecology,	5.6	3
4	Linking Breeding and Wintering Grounds of Bicknell's Thrushes Using Stable Isotope Analyses of Feathe	ers	46
3	High-frequency NO ₃ isotope (¹⁵ N, ¹⁸ O) patterns in groundwater recharge reveal that short-term land use and climatic changes influence nitrate contamination trends		3
2	Global isoscapes for ¹⁸ O and ² H in precipitation: improved prediction using regionalized climatic regression models		19
1	Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapor equilibration laser spectroscopy method		6