Eric V Patterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2543278/publications.pdf

Version: 2024-02-01

489802 536525 1,431 29 18 29 citations h-index g-index papers 30 30 30 1814 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acid- and Base-Mediated Hydrolysis of Dichloroacetamide Herbicide Safeners. Environmental Science & Emp; Technology, 2022, 56, 325-334.	4.6	4
2	Computational Approaches for the Prediction of Environmental Transformation Products: Chlorination of Steroidal Enones. Environmental Science & Environmental Science & 2021, 55, 14658-14666.	4.6	6
3	Building Shape-Persistent Arylene Ethynylene Macrocycles as Scaffolds for 1,4-Diiodobutadiyne. Journal of Organic Chemistry, 2020, 85, 7641-7647.	1.7	1
4	Intramolecular [2 + 2] Photocycloaddition of Altrenogest: Confirmation of Product Structure, Theoretical Mechanistic Insight, and Bioactivity Assessment. Journal of Organic Chemistry, 2019, 84, 11366-11371.	1.7	6
5	Atropselective Oxidation of $2,2\hat{a}\in^2,3,3\hat{a}\in^2,4,6\hat{a}\in^2$ -Hexachlorobiphenyl (PCB 132) to Hydroxylated Metabolites by Human Liver Microsomes and Its Implications for PCB 132 Neurotoxicity. Toxicological Sciences, 2019, 171, 406-420.	1.4	15
6	Photocatalytic Radical Aroylation of Unactivated Alkenes: Pathway to \hat{l}^2 -Functionalized 1,4-, 1,6-, and 1,7-Diketones. ACS Catalysis, 2019, 9, 10358-10364.	5.5	66
7	Reversible Photohydration of Trenbolone Acetate Metabolites: Mechanistic Understanding of Product-to-Parent Reversion through Complementary Experimental and Theoretical Approaches. Environmental Science & Environmental Sci	4.6	14
8	Backbone–Base Interactions Critical to Quantum Stabilization of Transfer RNA Anticodon Structure. Journal of Physical Chemistry B, 2013, 117, 7489-7497.	1.2	11
9	Product-to-Parent Reversion of Trenbolone: Unrecognized Risks for Endocrine Disruption. Science, 2013, 342, 347-351.	6.0	73
10	H ₂ Sâ€Mediated Thermal and Photochemical Methane Activation. ChemPhysChem, 2013, 14, 3960-3970.	1.0	9
11	Computational Studies of CO ₂ Activation via Photochemical Reactions with Reduced Sulfur Compounds. Journal of Physical Chemistry A, 2012, 116, 9331-9339.	1.1	25
12	2-Amino-5-(3,4-dimethoxybenzylidene)-1-methylimidazol-4(5 <i>H</i>)-one <i>N</i> , <i>N</i> -dimethylformamide monosolvate. Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, o101-o103.	0.4	1
13	Effects of Cyano Substituents on Cyclobutadiene and Its Isomers. Journal of Physical Chemistry A, 2010, 114, 6431-6437.	1.1	18
14	Structure of Triplet Propynylidene (HCCCH) as Probed by IR, UV/vis, and EPR Spectroscopy of Isotopomers. Journal of the American Chemical Society, 2009, 131, 9442-9455.	6.6	39
15	Impact of Solvent Polarity on N-Heterocyclic Carbene-Catalyzed Î ² -Protonations of Homoenolate Equivalents. Organic Letters, 2009, 11, 3942-3945.	2.4	73
16	Computational studies on the solvolysis of the chemical warfare agent VX. Journal of Physical Organic Chemistry, 2008, 21, 321-328.	0.9	36
17	Atom-Centered Density Matrix Propagation Calculations on the Methyl Transfer from CH3Cl to NH3:  Gas-Phase and Continuum-Solvated Trajectories. Journal of Chemical Theory and Computation, 2007, 3, 336-343.	2.3	12
18	Quantum mechanical calculations on the reaction of ethoxide anion with O,S-dimethyl methylphosphonothiolate. Computational and Theoretical Chemistry, 2007, 811, 281-291.	1.5	18

#	Article	IF	CITATIONS
19	On Gas Phase α-Effects. 1. The Gas-Phase Manifestation and Potential SET Character. Journal of Organic Chemistry, 2006, 71, 8121-8125.	1.7	43
20	Ab Initio Molecular Orbital and Density Functional Studies on the Solvolysis of Sarin and O,S-Dimethyl Methylphosphonothiolate, a VX-like Compound. Journal of Organic Chemistry, 2005, 70, 8649-8660.	1.7	72
21	Fluorescence of substituted pyrrolyl pyridines. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 463-471.	2.0	5
22	lonic Liquids Based on FeCl3and FeCl2. Raman Scattering and ab Initio Calculations. Inorganic Chemistry, 2001, 40, 2298-2304.	1.9	314
23	Reductive Dechlorination of Hexachloroethane in the Environment: Mechanistic Studies via Computational Electrochemistry. Journal of the American Chemical Society, 2001, 123, 2025-2031.	6.6	88
24	Molecular orbital calculations on the P?S bond cleavage step in the hydroperoxidolysis of nerve agent VX. Journal of Physical Organic Chemistry, 1998, 11, 232-240.	0.9	26
25	Structures, Automerizations, and Isomerizations of C3H2Isomers. Journal of the American Chemical Society, 1997, 119, 5847-5856.	6.6	141
26	Rearrangements of C7H6lsomers:Â Computational Studies of the Interconversions of Bicyclo[3.2.0]hepta-1,3,6-triene, Bicyclo[3.2.0]hepta-3,6-diene-2-ylidene, Bicyclo[3.2.0]hepta-2,3,6-triene, and Cyclohepta-1,2,4,6-tetraene. Journal of Organic Chemistry, 1997, 62, 4398-4405.	1.7	38
27	Nitrogen and Oxygen Donors in Nonlinear Optical Materials:Â Effects of Alkyl vs Phenyl Substitution on the Molecular Hyperpolarizability. Journal of the American Chemical Society, 1996, 118, 9966-9973.	6.6	65
28	The C7H6 Potential Energy Surface Revisited: Relative Energies and IR Assignment. Journal of the American Chemical Society, 1996, 118, 1535-1542.	6.6	155
29	Structure of Triplet Propynylidene. Journal of the American Chemical Society, 1995, 117, 835-836.	6.6	57