
Hyung-Suk Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2543230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of less than 1Ânm Scale Spaces on SnO ₂ Nanoparticles for Highâ€Performance Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2022, 32, 2107349.	7.8	23
2	Thermo-selenized stainless steel as an efficient oxygen evolution electrode for water splitting and CO2 electrolysis in real water matrices. Journal of Power Sources, 2022, 521, 230953.	4.0	10
3	Unraveling CoNiP‒CoP ₂ 3Dâ€onâ€1D Hybrid Nanoarchitecture for Longâ€Lasting Electrochemical Hybrid Cells and Oxygen Evolution Reaction. Advanced Science, 2022, 9, e2104877.	5.6	26
4	Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe-CoOOH phase with intermediate-spin state during electrolysis. Nature Communications, 2022, 13, 605.	5.8	149
5	Interface rich CuO/Al ₂ CuO ₄ surface for selective ethylene production from electrochemical CO ₂ conversion. Energy and Environmental Science, 2022, 15, 2397-2409.	15.6	54
6	Microenvironments of Cu catalysts in zero-gap membrane electrode assembly for efficient CO ₂ electrolysis to C ₂₊ products. Journal of Materials Chemistry A, 2022, 10, 10363-10372.	5.2	16
7	Collaborative Electrochemical Oxidation of the Alcohol and Aldehyde Groups of 5-Hydroxymethylfurfural by NiOOH and Cu(OH) ₂ for Superior 2,5-Furandicarboxylic Acid Production. ACS Catalysis, 2022, 12, 4078-4091.	5.5	45
8	Understanding the Grain Boundary Behavior of Bimetallic Platinum–Cobalt Alloy Nanowires toward Oxygen Electro-Reduction. ACS Catalysis, 2022, 12, 3516-3523.	5.5	23
9	Monolithic Lead Halide Perovskite Photoelectrochemical Cell with 9.16% Applied Bias Photon-to-Current Efficiency. ACS Energy Letters, 2022, 7, 320-327.	8.8	19
10	Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate. Nature Communications, 2022, 13, 2205.	5.8	61
11	Unraveling the role of introduced W in oxidation tolerance for Pt-based catalysts via on-line inductive coupled plasma-mass spectrometry. Electrochemistry Communications, 2022, 139, 107301.	2.3	1
12	Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts. Catalysis Today, 2021, 359, 99-105.	2.2	42
13	Nanocatalyst Design for Longâ€Term Operation of Proton/Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials, 2021, 11, 2003188.	10.2	89
14	New strategies for economically feasible CO ₂ electroreduction using a porous membrane in zero-gap configuration. Journal of Materials Chemistry A, 2021, 9, 16169-16177.	5.2	14
15	Real-time monitoring of electrochemical carbon corrosion in alkaline media. Journal of Materials Chemistry A, 2021, 9, 19834-19839.	5.2	29
16	Identification of Single-Atom Ni Site Active toward Electrochemical CO ₂ Conversion to CO. Journal of the American Chemical Society, 2021, 143, 925-933.	6.6	107
17	Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst. Nature Communications, 2021, 12, 1856.	5.8	106
18	Understanding morphological degradation of Ag nanoparticle during electrochemical CO2 reduction reaction by identical location observation. Electrochimica Acta, 2021, 371, 137795.	2.6	15

#	Article	IF	CITATIONS
19	Achieving over 15% Efficiency in Solution-Processed Cu(In,Ga)(S,Se) ₂ Thin-Film Solar Cells via a Heterogeneous-Formation-Induced Benign p–n Junction Interface. ACS Applied Materials & Interfaces, 2021, 13, 13289-13300.	4.0	12
20	Quantification of Active Site Density and Turnover Frequency: From Single-Atom Metal to Nanoparticle Electrocatalysts. Jacs Au, 2021, 1, 586-597.	3.6	53
21	Evidence of Marsâ€Vanâ€Krevelen Mechanism in the Electrochemical Oxygen Evolution on Niâ€Based Catalysts. Angewandte Chemie, 2021, 133, 15108-15115.	1.6	9
22	Evidence of Marsâ€Vanâ€Krevelen Mechanism in the Electrochemical Oxygen Evolution on Niâ€Based Catalysts. Angewandte Chemie - International Edition, 2021, 60, 14981-14988.	7.2	67
23	Highly selective and stackable electrode design for gaseous CO2 electroreduction to ethylene in a zero-gap configuration. Nano Energy, 2021, 84, 105859.	8.2	36
24	High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nature Communications, 2021, 12, 4271.	5.8	75
25	Enhancement of Catalytic Activity and Selectivity for the Gaseous Electroreduction of CO ₂ to CO: Guidelines for the Selection of Carbon Supports. Advanced Sustainable Systems, 2021, 5, 2100216.	2.7	10
26	Vertical-crystalline Fe-doped \hat{l}^2 -Ni oxyhydroxides for highly active and stable oxygen evolution reaction. Matter, 2021, 4, 3585-3604.	5.0	34
27	W@Ag dendrites as efficient and durable electrocatalyst for solar-to-CO conversion using scalable photovoltaic-electrochemical system. Applied Catalysis B: Environmental, 2021, 297, 120427.	10.8	20
28	Design methodology for mass transfer-enhanced large-scale electrochemical reactor for CO <mml:math <br="" display="inline" id="d1e969" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si32.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> reduction. Chemical	6.6	21
29	Engineering Journal, 2021, 424, 130265. Crystal Phase Transition Creates a Highly Active and Stable RuC <i>_X</i> Nanosurface for Hydrogen Evolution Reaction in Alkaline Media. Advanced Materials, 2021, 33, e2105248.	11.1	27
30	Improving the oxygen evolution reaction using electronic structure modulation of sulfur-retaining nickel-based electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 27034-27040.	5.2	25
31	Data-driven pilot optimization for electrochemical CO mass production. Journal of Materials Chemistry A, 2020, 8, 16943-16950.	5.2	12
32	Highly stable and ordered intermetallic PtCo alloy catalyst supported on graphitized carbon containing Co@CN for oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 19833-19842.	5.2	47
33	Oxygen Vacancies Induced NiFe-Hydroxide as a Scalable, Efficient, and Stable Electrode for Alkaline Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 14071-14081.	3.2	32
34	Single-atom catalysts for the oxygen evolution reaction: recent developments and future perspectives. Chemical Communications, 2020, 56, 12687-12697.	2.2	69
35	<i>Operando</i> Stability of Platinum Electrocatalysts in Ammonia Oxidation Reactions. ACS Catalysis, 2020, 10, 11674-11684.	5.5	36
36	A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation. Journal of Materials Chemistry A, 2020, 8, 9859-9870.	5.2	26

#	Article	IF	CITATIONS
37	Highly selective and scalable CO2 to CO - Electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration. Nano Energy, 2020, 76, 105030.	8.2	73
38	Electroactivation-induced IrNi nanoparticles under different pH conditions for neutral water oxidation. Nanoscale, 2020, 12, 14903-14910.	2.8	14
39	Carbon-Supported IrCoO nanoparticles as an efficient and stable OER electrocatalyst for practicable CO2 electrolysis. Applied Catalysis B: Environmental, 2020, 269, 118820.	10.8	54
40	Controlling the C2+ product selectivity of electrochemical CO ₂ reduction on an electrosprayed Cu catalyst. Journal of Materials Chemistry A, 2020, 8, 6210-6218.	5.2	37
41	Mass Transport Control by Surface Graphene Oxide for Selective CO Production from Electrochemical CO ₂ Reduction. ACS Catalysis, 2020, 10, 3222-3231.	5.5	57
42	Metal–Oxide Interfaces for Selective Electrochemical C–C Coupling Reactions. ACS Energy Letters, 2019, 4, 2241-2248.	8.8	62
43	Achieving tolerant CO2 electro-reduction catalyst in real water matrix. Applied Catalysis B: Environmental, 2019, 258, 117961.	10.8	19
44	Theoretical and Experimental Understanding of Hydrogen Evolution Reaction Kinetics in Alkaline Electrolytes with Pt-Based Core–Shell Nanocrystals. Journal of the American Chemical Society, 2019, 141, 18256-18263.	6.6	91
45	Turning Harmful Deposition of Metal Impurities into Activation of Nitrogen-Doped Carbon Catalyst toward Durable Electrochemical CO ₂ Reduction. ACS Energy Letters, 2019, 4, 2343-2350.	8.8	23
46	Electrochemical Fragmentation of Cu ₂ O Nanoparticles Enhancing Selective C–C Coupling from CO ₂ Reduction Reaction. Journal of the American Chemical Society, 2019, 141, 4624-4633.	6.6	390
47	Effect of Pt introduced on Ru-based electrocatalyst for oxygen evolution activity and stability. Electrochemistry Communications, 2019, 104, 106469.	2.3	40
48	General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nature Communications, 2019, 10, 5193.	5.8	219
49	A highly efficient Cu(In,Ga)(S,Se)2 photocathode without a hetero-materials overlayer for solar-hydrogen production. Scientific Reports, 2018, 8, 5182.	1.6	13
50	Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction. Applied Catalysis B: Environmental, 2018, 233, 130-135.	10.8	103
51	Understanding Selective Reduction of CO 2 to CO on Modified Carbon Electrocatalysts. ChemElectroChem, 2018, 5, 1615-1621.	1.7	16
52	Achieving 14.4% Alcohol-Based Solution-Processed Cu(In,Ga)(S,Se) ₂ Thin Film Solar Cell through Interface Engineering. ACS Applied Materials & Interfaces, 2018, 10, 9894-9899.	4.0	54
53	A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core–shell electrocatalysts. Nature Catalysis, 2018, 1, 841-851.	16.1	424
54	Effects of metal or metal oxide additives on oxidative coupling of methane using Na2WO4/SiO2 catalysts: Reducibility of metal additives to manipulate the catalytic activity. Applied Catalysis A: General, 2018, 562, 114-119.	2.2	39

#	Article	IF	CITATIONS
55	Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO. Catalysis Communications, 2018, 114, 109-113.	1.6	55
56	Sloughing a Precursor Layer to Expose Active Stainless Steel Catalyst for Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 24499-24507.	4.0	25
57	Insight into water oxidation activity enhancement of Ni-based electrocatalysts interacting with modified carbon supports. Electrochimica Acta, 2018, 281, 684-691.	2.6	8
58	Mixed Copper States in Anodized Cu Electrocatalyst for Stable and Selective Ethylene Production from CO ₂ Reduction. Journal of the American Chemical Society, 2018, 140, 8681-8689.	6.6	397
59	Selective CO ₂ Reduction on Zinc Electrocatalyst: The Effect of Zinc Oxidation State Induced by Pretreatment Environment. ACS Sustainable Chemistry and Engineering, 2017, 5, 11377-11386.	3.2	127
60	Electrochemical Catalyst–Support Effects and Their Stabilizing Role for IrO _{<i>x</i>} Nanoparticle Catalysts during the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 12552-12563.	6.6	451
61	Oxideâ€Supported IrNiO _{<i>x</i>} Core–Shell Particles as Efficient, Costâ€Effective, and Stable Catalysts for Electrochemical Water Splitting. Angewandte Chemie, 2015, 127, 3018-3022.	1.6	44
62	Metalâ€Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO ₂ Electroreduction to CO and Hydrocarbons. Angewandte Chemie - International Edition, 2015, 54, 10758-10762.	7.2	504
63	Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chemical Science, 2015, 6, 3321-3328.	3.7	332
64	Oxide‣upported IrNiO _{<i>x</i>} Core–Shell Particles as Efficient, Costâ€Effective, and Stable Catalysts for Electrochemical Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 2975-2979.	7.2	384
65	Preparation of Mesoporous Sbâ€, Fâ€, and Inâ€Doped SnO ₂ Bulk Powder with High Surface Area for Use as Catalyst Supports in Electrolytic Cells. Advanced Functional Materials, 2015, 25, 1074-1081.	7.8	127
66	Modification of electrodes using Al2O3 to reduce phosphoric acid loss and increase the performance of high-temperature proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2013, 1, 2578.	5.2	27
67	Preparation of carbon-supported nanosegregated Pt alloy catalysts for the oxygen reduction reaction using a silica encapsulation process to inhibit the sintering effect during heat treatment. Journal of Materials Chemistry, 2012, 22, 15215.	6.7	23
68	Electrochemical carbon corrosion in high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37, 10844-10849.	3.8	60
69	The role of transition metals in non-precious nitrogen-modified carbon-based electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2012, 212, 220-225.	4.0	112
70	Development of highly active and stable non-precious oxygen reduction catalysts for PEM fuel cells using polypyrrole and a chelating agent. Electrochemistry Communications, 2011, 13, 879-881.	2.3	87
71	Polypyrrole-modified hydrophobic carbon nanotubes as promising electrocatalyst supports in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 11564-11571.	3.8	35
72	The influence of the structural properties of carbon on the oxygen reduction reaction of nitrogen modified carbon based catalysts. International Journal of Hydrogen Energy, 2011, 36, 8181-8186.	3.8	81

#	Article	IF	CITATIONS
73	Efficient Synthesis of Pt Nanoparticles Supported on Hydrophobic Graphitized Carbon Nanofibers for Electrocatalysts Using Noncovalent Functionalization. Advanced Functional Materials, 2011, 21, 3954-3960.	7.8	74
74	Effect of heat-treatment temperature on carbon corrosion in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2010, 195, 2623-2627.	4.0	33
75	Effect of chemical oxidation of CNFs on the electrochemical carbon corrosion in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2010, 35, 701-708.	3.8	79
76	Noncovalent Modification of Carbon Nanofibers Using 2-Naphthalenethiol for Catalyst Supports in PEM Fuel Cells. Journal of Electrochemical Science and Technology, 2010, 1, 92-96.	0.9	4
77	Corrosion resistance and sintering effect of carbon supports in polymer electrolyte membrane fuel cells. Electrochimica Acta, 2009, 54, 6515-6521.	2.6	92
78	Effect of operating conditions on carbon corrosion in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2009, 193, 575-579.	4.0	100
79	Use of a carbon nanocage as a catalyst support in polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2009, 11, 1131-1134.	2.3	32
80	Effect of Acid Treatment of Graphitized Carbon on Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells. Journal of the Korean Electrochemical Society, 2009, 12, 181-188.	0.1	0
81	Effect of Graphitized Carbon Supports on Electrochemical Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells. Journal of the Korean Electrochemical Society, 2009, 12, 142-147.	0.1	0
82	Modification of polyol process for synthesis of highly platinum loaded platinum–carbon catalysts for fuel cells. Journal of Power Sources, 2008, 183, 600-603.	4.0	79
83	Growth and characterization of carbon-supported MnO2 nanorods for supercapacitor electrode. Physica B: Condensed Matter, 2008, 403, 1763-1769.	1.3	48
84	Novel method for the preparation of carbon supported nano-sized amorphous ruthenium oxides for supercapacitors. Electrochemistry Communications, 2008, 10, 1035-1037.	2.3	18
85	On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2008, 10, 1048-1051.	2.3	80
86	Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor. Journal of Power Sources, 2007, 173, 1024-1028.	4.0	110
87	Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications. Electrochimica Acta, 2007, 52, 7278-7285.	2.6	113
88	Vertical Alignment of Fe-Doped <i>β</i> ‑Ni Oxyhydroxides for Highly Active and Stable Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0