
Lin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2543202/publications.pdf Version: 2024-02-01

LINTI

#	Article	IF	CITATIONS
1	Synthetic <i>O</i> -Acetylated Sialosides and their Acetamido-deoxy Analogues as Probes for Coronaviral Hemagglutinin-esterase Recognition. Journal of the American Chemical Society, 2022, 144, 424-435.	13.7	4
2	Synthetic <i>O</i> -Acetyl- <i>N</i> -glycolylneuraminic Acid Oligosaccharides Reveal Host-Associated Binding Patterns of Coronaviral Glycoproteins. ACS Infectious Diseases, 2022, 8, 1041-1050.	3.8	3
3	Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nature Communications, 2022, 13, .	12.8	23
4	Synthetic O-acetylated sialosides facilitate functional receptor identification for human respiratory viruses. Nature Chemistry, 2021, 13, 496-503.	13.6	31
5	Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2. ACS Central Science, 2021, 7, 1009-1018.	11.3	113
6	Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases. Journal of Biological Chemistry, 2020, 295, 17027-17045.	3.4	19
7	Salt-free fractionation of complex isomeric mixtures of glycosaminoglycan oligosaccharides compatible with ESI-MS and microarray analysis. Scientific Reports, 2019, 9, 16566.	3.3	7
8	N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses. Cell Reports, 2019, 27, 3284-3294.e6.	6.4	78
9	An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nature Chemistry, 2019, 11, 229-236.	13.6	124
10	Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nature Chemistry, 2019, 11, 161-169.	13.6	94
11	Human <i>N</i> -acetylglucosaminyltransferase II substrate recognition uses a modular architecture that includes a convergent exosite. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4637-4642.	7.1	37
12	4,6-‹i>O‹/i>-Pyruvyl Ketal Modified ‹i>N‹/i>-Acetylmannosamine of the Secondary Cell Wall Polysaccharide of ‹i>Bacillus anthracis‹/i> Is the Anchoring Residue for Its Surface Layer Proteins. Journal of the American Chemical Society, 2018, 140, 17079-17085.	13.7	17
13	Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6954-6959.	7.1	118
14	Improved isolation and characterization procedure of sialylglycopeptide from egg yolk powder. Carbohydrate Research, 2017, 452, 122-128.	2.3	68
15	Mining High-Complexity Motifs in Glycans: A New Language To Uncover the Fine Specificities of Lectins and Glycosidases. Analytical Chemistry, 2017, 89, 12342-12350.	6.5	28
16	Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nature Communications, 2017, 8, 1483.	12.8	67
17	Labelâ€Free Detection of Glycan–Protein Interactions for Array Development by Surfaceâ€Enhanced Raman Spectroscopy (SERS). Chemistry - A European Journal, 2016, 22, 11180-11185.	3.3	18
18	Divergent Chemoenzymatic Synthesis of Asymmetricalâ€Coreâ€Fucosylated and Coreâ€Unmodified <i>N</i> â€Glycans. Chemistry - A European Journal, 2016, 22, 18742-18746.	3.3	38

Lin Liu

#	Article	IF	CITATIONS
19	Synthetic Enterobacterial Common Antigen (ECA) for the Development of a Universal Immunotherapy for Drugâ€Resistant <i>Enterobacteriaceae</i> . Angewandte Chemie - International Edition, 2015, 54, 10953-10957.	13.8	32
20	Synthesis of <i>Staphylococcus aureus</i> Type 5 Trisaccharide Repeating Unit: Solving the Problem of Lactamization. Organic Letters, 2015, 17, 928-931.	4.6	40
21	Regioselective Benzylation of 2â€Deoxyâ€2â€aminosugars using Crown Ethers: Application to a Shortened Synthesis of Hyaluronic Acid Oligomers. Advanced Synthesis and Catalysis, 2014, 356, 2247-2256.	4.3	11
22	Synthesis of a series of maltotriose phosphates with an evaluation of the utility of a fluorous phosphate protecting group. Carbohydrate Research, 2013, 369, 14-24.	2.3	10
23	A mass-differentiated library strategy for identification of sugar nucleotidyltransferase activities from cell lysates. Analytical Biochemistry, 2013, 441, 8-12.	2.4	1
24	Multigram Synthesis of Isobutyl-β- <i>C</i> -galactoside as a Substitute of Isopropylthiogalactoside for Exogenous Gene Induction in Mammalian Cells. Journal of Organic Chemistry, 2012, 77, 1539-1546.	3.2	15
25	A Fluorous Phosphate Protecting Group with Applications to Carbohydrate Synthesis. Organic Letters, 2011, 13, 1824-1827.	4.6	32
26	5,6,6a,7,8,8a-Hexahydro-6a,7-dihydroxy-13bH-indeno[2,1-c]phenanthren-9(13cH)-one hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2216-o2218.	0.2	0