Nicolas Inguimbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2542881/publications.pdf

Version: 2024-02-01

471509 552781 64 927 17 26 citations h-index g-index papers 72 72 72 1197 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A new mitochondrial probe combining pyrene and a triphenylphosphonium salt for cellular oxygen and free radical detection via fluorescence lifetime measurements. Free Radical Research, 2022, 56, 258-272.	3.3	5
2	Peptide Vectors Carry Pyrene to Cell Organelles Allowing Realâ€Time Quantification of Free Radicals in Mitochondria by Timeâ€Resolved Fluorescence Microscopy. ChemBioChem, 2021, 22, 1676-1685.	2.6	9
3	d-Peptidase Activity in a Marine Mollusk Detoxifies a Nonribosomal Cyclic Lipopeptide: An Ecological Model to Study Antibiotic Resistance. Journal of Medicinal Chemistry, 2021, 64, 6198-6208.	6.4	1
4	Synthesis and Characterization of Bisâ€1,2,3â€Triazole Ligand and its Corresponding Copper Complex for the Development of Electrochemical Affinity Biosensors. Chemistry - A European Journal, 2021, 27, 9580-9588.	3.3	3
5	Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Marine Drugs, 2021, 19, 473.	4.6	3
6	Trichormamide C Structural Confirmation through Total Synthesis and Extension to Analogs. Organic Letters, 2020, 22, 145-149.	4.6	4
7	Biological Activities of Cyclic and Acyclic B-Type Laxaphycins in SH-SY5Y Human Neuroblastoma Cells. Marine Drugs, 2020, 18, 364.	4.6	13
8	Fe(III)-DOTA/Fe(III)-NOTA Complexes: Attractive Alternative Markers for Future Electrochemical Biosensors. Journal of the Electrochemical Society, 2020, 167, 117502.	2.9	2
9	Insights into the Natural Defenses of a Coral Reef Fish Against Gill Ectoparasites: Integrated Metabolome and Microbiome Approach. Metabolites, 2020, 10, 227.	2.9	3
10	Photodegradation of Myrigalone A, an Allelochemical from <i>Myrica gale</i> : Photoproducts and Effect of Terpenes. Journal of Agricultural and Food Chemistry, 2019, 67, 7258-7265.	5.2	5
11	NI956/QGC006, a Potent Orally Active, Brain-Penetrating Aminopeptidase A Inhibitor for Treating Hypertension. Hypertension, 2019, 73, 1300-1307.	2.7	17
12	Structure and biological evaluation of new cyclic and acyclic laxaphycin-A type peptides. Bioorganic and Medicinal Chemistry, 2019, 27, 1966-1980.	3.0	21
13	Salen/salan metallic complexes as redox labels for electrochemical aptasensors. Chemical Communications, 2019, 55, 12821-12824.	4.1	17
14	How are 1,2,3-triazoles accommodated in helical secondary structures?. Organic and Biomolecular Chemistry, 2018, 16, 3576-3583.	2.8	22
15	Peptaibols as a model for the insertions of chemical modifications. Archives of Biochemistry and Biophysics, 2018, 658, 16-30.	3.0	11
16	Towards the total synthesis of trichormamide A, a cyclic undecapeptide. Tetrahedron Letters, 2018, 59, 3713-3718.	1.4	7
17	Enhancing the Antimicrobial Activity of Alamethicin F50/5 by Incorporating Nâ€terminal Hydrophobic Triazole Substituents Chemistry - A European Journal, 2017, 23, 17964-17972.	3.3	13
18	Chemiluminescence immunoassays for estradiol and ethinylestradiol based on new biotinylated estrogen derivatives. Analytical Biochemistry, 2017, 537, 63-68.	2.4	14

#	Article	IF	CITATIONS
19	Development and validation of LC–MS methods for peptaibol quantification in fungal extracts according to their lengths. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1009-1010, 25-33.	2.3	13
20	Biophysical Studies of the Induced Dimerization of Human VEGF Receptor 1 Binding Domain by Divalent Metals Competing with VEGF-A. PLoS ONE, 2016, 11, e0167755.	2.5	10
21	Straightforward strategy to substitute amide bonds by 1,2,3â€triazoles in peptaibols analogs using Aibl^[Tz]â€Xaa dipeptides. Biopolymers, 2015, 104, 611-621.	2.4	10
22	Isolation and Synthesis of Laxaphycin B-Type Peptides: A Case Study and Clues to Their Biosynthesis. Marine Drugs, 2015, 13, 7285-7300.	4.6	23
23	Access to $\hat{l}\pm,\hat{l}\pm$ -Disubstituted Disilylated Amino Acids and Their Use in Solid-Phase Peptide Synthesis. Organic Letters, 2015, 17, 4498-4501.	4.6	11
24	Synthesis, Characterization and Antibacterial Activity of Cyclic Sulfamide Linked to Tetrathiafulvalene (TTF). Letters in Organic Chemistry, 2014, 11, 59-63.	0.5	12
25	Targeting VEGFR1 on endothelial progenitors modulates their differentiation potential. Angiogenesis, 2014, 17, 603-616.	7.2	14
26	Oxovanadium–salen and –salan complexes as effective labels for electrochemical immunosensing: a case study for estradiol detection. Chemical Communications, 2014, 50, 1658-1661.	4.1	16
27	Efficient Microwave-Assisted One Shot Synthesis of Peptaibols Using Inexpensive Coupling Reagents. Organic Letters, 2014, 16, 1783-1785.	4.6	20
28	First Total Synthesis and Stereochemical Revision of Laxaphycin B and Its Extension to Lyngbyacyclamide A. Organic Letters, 2013, 15, 3898-3901.	4.6	27
29	Synthesis of a protected derivative of $(2R,3R)$ - \hat{l}^2 -hydroxyaspartic acid suitable for Fmoc-based solid phase synthesis. Tetrahedron Letters, 2013, 54, 158-161.	1.4	16
30	Helical peptides from VEGF and Vammin hotspots for modulating the VEGF–VEGFR interaction. Organic and Biomolecular Chemistry, 2013, 11, 1896.	2.8	27
31	Immunosensors for Estradiol and Ethinylestradiol Based on New Synthetic Estrogen Derivatives: Application to Wastewater Analysis. Analytical Chemistry, 2013, 85, 2397-2404.	6.5	34
32	Thienopyrimidinedione Formation Versus Ester Hydrolysis from Ureido Carboxylic Acid Methyl Ester. Synthesis, 2013, 45, 479-490.	2.3	5
33	Characterization of a New Anticancer Agent, EAPB0203, and Its Main Metabolites: Nuclear Magnetic Resonance and Liquid Chromatography–Mass Spectrometry Studies. Analytical Chemistry, 2012, 84, 9865-9872.	6.5	12
34	Rapid synthesis of methoxyconidiol and conitriol stereoisomers. Tetrahedron Letters, 2012, 53, 4548-4550.	1.4	1
35	Disulfide and amide-bridged cyclic peptide analogues of the VEGF81–91 fragment: Synthesis, conformational analysis and biological evaluation. Bioorganic and Medicinal Chemistry, 2011, 19, 7526-7533.	3.0	22
36	Targeting the Proangiogenic VEGF-VEGFR Protein-Protein Interface with Drug-like Compounds by In Silico and InÂVitro Screening. Chemistry and Biology, 2011, 18, 1631-1639.	6.0	38

#	Article	IF	CITATIONS
37	Parallel solid-phase synthesis of a small library of linear and hydrocarbon-bridged analogues of VEGF81 \hat{a} e"91: Potential biological tools for studying the VEGF/VEGFR-1 interaction. Bioorganic and Medicinal Chemistry, 2011, 19, 1978-1986.	3.0	21
38	Soluble fms-like tyrosine kinase-1 antibody for diagnosis purposes (WO2010075475). Expert Opinion on Therapeutic Patents, 2011, 21, 971-975.	5.0	0
39	Biochemical and Structural Analysis of the Binding Determinants of a Vascular Endothelial Growth Factor Receptor Peptidic Antagonist. Journal of Medicinal Chemistry, 2010, 53, 4428-4440.	6.4	31
40	Total chemical synthesis of the D2 domain of human VEGF receptor 1. Journal of Peptide Science, 2009, 15, 417-422.	1.4	10
41	Cyclic peptides as VEGF receptor antagonist. Advances in Experimental Medicine and Biology, 2009, 611, 479-480.	1.6	0
42	Structureâ€based design of a bicyclic peptide antagonist of the vascular endothelial growth factor receptors. Journal of Peptide Science, 2008, 14, 767-772.	1.4	12
43	Synthesis and in vitro activities of new non-peptidic APA Inhibitors. Chemical Biology and Drug Design, 2008, 65, 175-188.	1.1	19
44	Orally Active Aminopeptidase A Inhibitors Reduce Blood Pressure. Hypertension, 2008, 51, 1318-1325.	2.7	92
45	Asp218 participates with Asp213 to bind a Ca2+ atom into the S1 subsite of aminopeptidase A: a key element for substrate specificity. Biochemical Journal, 2008, 416, 37-46.	3.7	17
46	Rational Design, Structure, and Biological Evaluation of Cyclic Peptides Mimicking the Vascular Endothelial Growth Factor. Journal of Medicinal Chemistry, 2007, 50, 5135-5146.	6.4	33
47	On-resin cyclization of peptide ligands of the Vascular Endothelial Growth Factor Receptor 1 by copper(I)-catalyzed 1,3-dipolar azide–alkyne cycloaddition. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5590-5594.	2.2	41
48	Development of a chemiluminescent screening assay for detection of vascular endothelial growth factor receptor 1 ligands. Analytical Biochemistry, 2007, 366, 108-110.	2.4	42
49	Unexpected formation of new chiral 3-amino-5-alkyl-2,5-dihydro-1H-pyrrolin-2-ones from N-Boc-α-amino esters. Tetrahedron Letters, 2005, 46, 3517-3520.	1.4	5
50	Synthesis of 1,3,5,2?5-Triazaphosphinines by Intramolecular Cyclization of (N-Cyanophosphorimidoyl)guanidines and Diguanidinophosphonium Chlorides ChemInform, 2005, 36, no.	0.0	0
51	In vivo properties of thiol inhibitors of the three vasopeptidases NEP, ACE and ECE are improved by introduction of a 7-azatryptophan in P2′ position. Chemical Biology and Drug Design, 2004, 63, 99-107.	1.1	6
52	Synthesis of $1,3,5,2\hat{l}$ »5-Triazaphosphinines by Intramolecular Cyclisation of (N-Cyanophosphorimidoyl)guanidines and Diguanidinophosphonium Chlorides. European Journal of Organic Chemistry, 2004, 2004, 4870-4876.	2.4	8
53	Synthesis and separation of tritiated inhibitors of aminopeptidase A and their prodrugs. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 997-1005.	1.0	6
54	Diazadiylide Anions [Ph 2 P(NR) 2] \hat{a} (R = CN, C(O)Ph) as Ambident Bridging and Chelating Ligands. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2187-2188.	1.6	0

#	Article	IF	CITATIONS
55	Toward an Optimal Joint Recognition of the S1†Subsites of Endothelin Converting Enzyme-1 (ECE-1), Angiotensin Converting Enzyme (ACE), and Neutral Endopeptidase (NEP). Journal of Medicinal Chemistry, 2002, 45, 1477-1486.	6.4	23
56	N-[2-(Indan-1-yl)-3-mercapto-propionyl] amino acids as highly potent inhibitors of the three vasopeptidases (NEP, ACE, ECE): In vitro and In vivo activities. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2001-2005.	2.2	21
57	Exploration of the S?1 subsite of neprilysin: A joined molecular modeling and site-directed mutagenesis study., 2000, 39, 365-371.		11
58	Crystal and molecular structures of N-diphenylphosphinyl- and N-diphenylthiophosphinyl-N′-phenyl guanidines, Ph2P(Y)Nr̃C(NH2)NHPh (Y=O,S). Journal of Molecular Structure, 2000, 519, 211-218.	3.6	4
59	Phosphonium Diylides in Organic Synthesis. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 401-404.	1.6	3
60	Synthesis of the sodium diphenylbis(cyanamido)phosphonium diylide by a new variation of the Staudinger reaction. Chemical Communications, 1999, , 565-566.	4.1	18
61	Phosphonium Diylides in Organic Synthesis. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 144, 401-404.	1.6	O
62	Synthesis of phosphinyl, thiophosphinyl and phosphonio guanidines. Journal of Organometallic Chemistry, 1997, 529, 257-265.	1.8	11
63	A Facile and General Synthesis of Phosphinylguanidines. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 124-124.	1.6	0
64	A Facile Synthesis of New Thiophosphinyl Guanidines. Synthetic Communications, 1995, 25, 2857-2863.	2.1	7