List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2542851/publications.pdf Version: 2024-02-01



FRIC VON LIEDES

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Two Steps in One Pot: Enzyme Cascade for the Synthesis of Nor(pseudo)ephedrine from Inexpensive<br>Starting Materials. Angewandte Chemie - International Edition, 2013, 52, 6772-6775.                                                    | 13.8 | 157       |
| 2  | High Throughput Screening of Chromatographic Phases for Rapid Process Development. Chemical Engineering and Technology, 2005, 28, 1274-1284.                                                                                              | 1.5  | 116       |
| 3  | A fast and accurate solver for the general rate model of column liquid chromatography. Computers and Chemical Engineering, 2010, 34, 1180-1191.                                                                                           | 3.8  | 104       |
| 4  | Spatiotemporal microbial single ell analysis using a highâ€ŧhroughput microfluidics cultivation<br>platform. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87,<br>1101-1115.                  | 1.5  | 88        |
| 5  | A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. Lab on A Chip, 2019, 19, 98-110.                                                                                               | 6.0  | 79        |
| 6  | Determination of parameters for the steric mass action model—A comparison between two<br>approaches. Journal of Chromatography A, 2012, 1233, 54-65.                                                                                      | 3.7  | 72        |
| 7  | Mechanistic modeling of ion-exchange process chromatography of charge variants of monoclonal antibody products. Journal of Chromatography A, 2015, 1426, 140-153.                                                                         | 3.7  | 64        |
| 8  | Chromatography Analysis and Design Toolkit (CADET). Computers and Chemical Engineering, 2018, 113, 274-294.                                                                                                                               | 3.8  | 64        |
| 9  | Can enzyme proximity accelerate cascade reactions?. Scientific Reports, 2019, 9, 455.                                                                                                                                                     | 3.3  | 57        |
| 10 | High Throughput Screening for the Design and Optimization of Chromatographic Processes:<br>Automated Optimization of Chromatographic Phase Systems. Chemical Engineering and Technology,<br>2009, 32, 140-154.                            | 1.5  | 55        |
| 11 | Optimizing a chromatographic three component separation: A comparison of mechanistic and empiric modeling approaches. Journal of Chromatography A, 2012, 1237, 86-95.                                                                     | 3.7  | 54        |
| 12 | Model-integrated process development demonstrated on the optimization of a robotic cation exchange step. Chemical Engineering Science, 2012, 76, 129-139.                                                                                 | 3.8  | 49        |
| 13 | High Throughput Screening for the Design and Optimization of Chromatographic Processes:<br>Assessment of Model Parameter Determination from High Throughput Compatible Data. Chemical<br>Engineering and Technology, 2008, 31, 1846-1855. | 1.5  | 47        |
| 14 | Influence of Organic Solvents on Enzymatic Asymmetric Carboligations. Advanced Synthesis and Catalysis, 2012, 354, 2805-2820.                                                                                                             | 4.3  | 47        |
| 15 | Fast and accurate parameter sensitivities for the general rate model of column liquid chromatography. Computers and Chemical Engineering, 2013, 56, 46-57.                                                                                | 3.8  | 43        |
| 16 | Does metabolite channeling accelerate enzyme-catalyzed cascade reactions?. PLoS ONE, 2017, 12, e0172673.                                                                                                                                  | 2.5  | 41        |
| 17 | Direct Quantification of Intraparticle Protein Diffusion in Chromatographic Media. Journal of Physical Chemistry B, 2006, 110, 1429-1436.                                                                                                 | 2.6  | 34        |
| 18 | Competitive adsorption of labeled and native protein in confocal laser scanning microscopy.<br>Biotechnology and Bioengineering, 2006, 95, 58-66.                                                                                         | 3.3  | 34        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level. Lab on A Chip, 2015, 15, 4177-4186.                                                | 6.0  | 34        |
| 20 | Effects of uncertainties in experimental conditions on the estimation of adsorption model parameters in preparative chromatography. Computers and Chemical Engineering, 2013, 55, 148-157.                          | 3.8  | 32        |
| 21 | The effect of composition on diffusion of macromolecules in a crowded environment. Physical Biology, 2015, 12, 046003.                                                                                              | 1.8  | 32        |
| 22 | dMSCC: a microfluidic platform for microbial single-cell cultivation of <i>Corynebacterium<br/>glutamicum</i> under dynamic environmental medium conditions. Lab on A Chip, 2020, 20, 4442-4455.                    | 6.0  | 32        |
| 23 | Computational fluid dynamic simulation of axial and radial flow membrane chromatography:<br>Mechanisms of non-ideality and validation of the zonal rate model. Journal of Chromatography A,<br>2013, 1305, 114-122. | 3.7  | 30        |
| 24 | Performance of iterative equation solvers for mass transfer problems in three-dimensional sphere packings in COMSOL. Simulation Modelling Practice and Theory, 2013, 33, 115-131.                                   | 3.8  | 29        |
| 25 | A microfluidic experiment and pore scale modelling diagnostics for assessing mineral precipitation and dissolution in confined spaces. Chemical Geology, 2019, 528, 119264.                                         | 3.3  | 29        |
| 26 | Framework for Krigingâ€based iterative experimental analysis and design: Optimization of secretory<br>protein production in <i>Corynebacterium glutamicum</i> . Engineering in Life Sciences, 2016, 16,<br>538-549. | 3.6  | 27        |
| 27 | Robust mechanistic modeling of protein ion-exchange chromatography. Journal of Chromatography A,<br>2021, 1660, 462669.                                                                                             | 3.7  | 27        |
| 28 | Reproduction of Large-Scale Bioreactor Conditions on Microfluidic Chips. Microorganisms, 2019, 7, 105.                                                                                                              | 3.6  | 26        |
| 29 | Toward in silico CMC: An industrial collaborative approach to modelâ€based process development.<br>Biotechnology and Bioengineering, 2020, 117, 3986-4000.                                                          | 3.3  | 26        |
| 30 | Zonal rate model for stacked membrane chromatography. I: Characterizing solute dispersion under flow-through conditions. Journal of Chromatography A, 2011, 1218, 5071-5078.                                        | 3.7  | 23        |
| 31 | Dynamic Environmental Control in Microfluidic Single ell Cultivations: From Concepts to<br>Applications. Small, 2020, 16, e1906670.                                                                                 | 10.0 | 22        |
| 32 | Surface and bulk porosity mapping of polymer membranes using infrared spectroscopy. Journal of<br>Membrane Science, 2014, 452, 152-156.                                                                             | 8.2  | 21        |
| 33 | Investigation of pore diffusion hindrance of monoclonal antibody in hydrophobic interaction<br>chromatography using confocal laser scanning microscopy. Journal of Chromatography A, 2007, 1149,<br>178-188.        | 3.7  | 20        |
| 34 | Utilizing algorithmic differentiation to efficiently compute chromatograms and parameter sensitivities. Chemical Engineering Science, 2016, 139, 152-162.                                                           | 3.8  | 20        |
| 35 | Multi-state steric mass action model and case study on complex high loading behavior of mAb on ion exchange tentacle resin. Journal of Chromatography A, 2017, 1525, 60-70.                                         | 3.7  | 20        |
| 36 | Single-cell computational analysis of light harvesting in a flat-panel photo-bioreactor. Biotechnology<br>for Biofuels, 2018, 11, 149.                                                                              | 6.2  | 19        |

ERIC VON LIERES

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Zonal rate model for axial and radial flow membrane chromatography. Part I: Knowledge transfer across operating conditions and scales. Biotechnology and Bioengineering, 2013, 110, 1129-1141.                                       | 3.3 | 18        |
| 38 | Model-based analysis and quantitative prediction of membrane chromatography: Extreme scale-up<br>from 0.08 ml to 1200 ml. Journal of Chromatography A, 2014, 1332, 8-13.                                                             | 3.7 | 18        |
| 39 | Development and application of a cultivation platform for mammalian suspension cell lines with singleâ€cell resolution. Biotechnology and Bioengineering, 2021, 118, 992-1005.                                                       | 3.3 | 18        |
| 40 | Zonal rate model for stacked membrane chromatography part II: Characterizing ionâ€exchange<br>membrane chromatography under protein retention conditions. Biotechnology and Bioengineering,<br>2012, 109, 615-629.                   | 3.3 | 17        |
| 41 | Fast arbitrary order moments and arbitrary precision solution of the general rate model of column<br>liquid chromatography with linear isotherm. Computers and Chemical Engineering, 2016, 84, 350-362.                              | 3.8 | 17        |
| 42 | Microbial single-cell growth response at defined carbon limiting conditions. RSC Advances, 2019, 9, 14040-14050.                                                                                                                     | 3.6 | 16        |
| 43 | Dynamic flux balance analysis with nonlinear objective function. Journal of Mathematical Biology, 2017, 75, 1487-1515.                                                                                                               | 1.9 | 15        |
| 44 | Stabilized space–time finite elements for high-definition simulation of packed bed chromatography.<br>Finite Elements in Analysis and Design, 2014, 86, 1-11.                                                                        | 3.2 | 14        |
| 45 | A class of compartmental models for long-distance tracer transport in plants. Journal of Theoretical Biology, 2014, 341, 131-142.                                                                                                    | 1.7 | 13        |
| 46 | A framework for accelerated phototrophic bioprocess development: integration of parallelized<br>microscale cultivation, laboratory automation and Kriging-assisted experimental design.<br>Biotechnology for Biofuels, 2017, 10, 26. | 6.2 | 13        |
| 47 | ChromaTech: A discontinuous Galerkin spectral element simulator for preparative liquid chromatography. Computers and Chemical Engineering, 2020, 141, 107012.                                                                        | 3.8 | 13        |
| 48 | Advanced score system and automated search strategies for parameter estimation in mechanistic chromatography modeling. Journal of Chromatography A, 2022, 1661, 462693.                                                              | 3.7 | 13        |
| 49 | Model-based performance analysis of pleated filters with non-woven layers. Separation and Purification Technology, 2020, 250, 117006.                                                                                                | 7.9 | 12        |
| 50 | Coarseâ€graining bacteria colonies for modelling critical solute distributions in picolitre bioreactors<br>for bacterial studies on singleâ€cell level. Microbial Biotechnology, 2017, 10, 845-857.                                  | 4.2 | 11        |
| 51 | Kriging with trend functions nonlinear in their parameters: Theory and application in enzyme kinetics.<br>Engineering in Life Sciences, 2017, 17, 916-922.                                                                           | 3.6 | 11        |
| 52 | Effective Production of (S)-α-Hydroxy ketones: An Reaction Engineering Approach. Topics in Catalysis, 2014, 57, 401-411.                                                                                                             | 2.8 | 10        |
| 53 | Zonal rate model for axial and radial flow membrane chromatography, part II: Modelâ€based scaleâ€up.<br>Biotechnology and Bioengineering, 2014, 111, 1587-1594                                                                       | 3.3 | 10        |
| 54 | μMORE: A microfluidic magnetic oscillation reactor for accelerated parameter optimization in biocatalysis. Journal of Biotechnology, 2016, 231, 174-182.                                                                             | 3.8 | 10        |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Bayesian calibration, process modeling and uncertainty quantification in biotechnology. PLoS<br>Computational Biology, 2022, 18, e1009223.                                                                                                                    | 3.2 | 10        |
| 56 | Microfluidic Reproduction of Dynamic Bioreactor Environment Based on Computational Lifelines.<br>Frontiers in Chemical Engineering, 2022, 4, .                                                                                                                | 2.7 | 10        |
| 57 | Detection, Quantification, and Propagation of Uncertainty in High-Throughput Experimentation by<br>Monte Carlo Methods. Chemical Engineering and Technology, 2012, 35, 1456-1464.                                                                             | 1.5 | 9         |
| 58 | Multiscale dynamic modeling and simulation of a biorefinery. Biotechnology and Bioengineering, 2019, 116, 2561-2574.                                                                                                                                          | 3.3 | 9         |
| 59 | Rhizosphere models: their concepts and application to plant-soil ecosystems. Plant and Soil, 2022, 474, 17-55.                                                                                                                                                | 3.7 | 9         |
| 60 | Discrete-continuous reaction-diffusion model with mobile point-like sources and sinks. European<br>Physical Journal E, 2016, 39, 11.                                                                                                                          | 1.6 | 8         |
| 61 | Efficient numerical simulation of simulated moving bed chromatography with a single-column solver.<br>Computers and Chemical Engineering, 2018, 111, 183-198.                                                                                                 | 3.8 | 8         |
| 62 | Fluid dynamics in pleated membrane filter devices. Separation and Purification Technology, 2021, 267, 118580.                                                                                                                                                 | 7.9 | 8         |
| 63 | Enzyme co-localisation: Mechanisms and benefits. Current Research in Chemical Biology, 2022, , 100031.                                                                                                                                                        | 2.9 | 8         |
| 64 | Irreversible Damage of Polymer Membranes During Attenuated Total Reflection Infrared Analysis.<br>Applied Spectroscopy, 2017, 71, 1127-1133.                                                                                                                  | 2.2 | 7         |
| 65 | Model-based process design of a ternary protein separation using multi-step gradient ion-exchange<br>SMB chromatography. Computers and Chemical Engineering, 2020, 138, 106851.                                                                               | 3.8 | 7         |
| 66 | Patterns of protein adsorption in ion-exchange particles and columns: Evolution of protein<br>concentration profiles during load, hold, and wash steps predicted for pore and solid diffusion<br>mechanisms. Journal of Chromatography A, 2021, 1653, 462412. | 3.7 | 7         |
| 67 | A new mixedâ€mode model for interpreting and predicting protein elution during isoelectric chromatofocusing. Biotechnology and Bioengineering, 2014, 111, 925-936.                                                                                            | 3.3 | 6         |
| 68 | Finite volume schemes for the numerical simulation of tracer transport in plants. Mathematical<br>Biosciences, 2017, 288, 14-20.                                                                                                                              | 1.9 | 6         |
| 69 | Laboratory-scale photobiotechnology—current trends and future perspectives. FEMS Microbiology<br>Letters, 2018, 365, .                                                                                                                                        | 1.8 | 6         |
| 70 | Model-based performance analysis and scale-up of membrane adsorbers with a cassettes format designed for parallel operation. Chemical Engineering Science, 2018, 192, 103-113.                                                                                | 3.8 | 6         |
| 71 | Complex Evolution of Light-Dependent Protochlorophyllide Oxidoreductases in Aerobic Anoxygenic<br>Phototrophs: Origin, Phylogeny, and Function. Molecular Biology and Evolution, 2021, 38, 819-837.                                                           | 8.9 | 6         |
| 72 | Regularization of a non-characteristic Cauchy problem for a parabolic equation in multiple dimensions. Inverse Problems, 1999, 15, 731-743.                                                                                                                   | 2.0 | 5         |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Multiâ€objective global optimization (MOGO): Algorithm and case study in gradient elution chromatography. Biotechnology Journal, 2017, 12, 1600613.                                                                             | 3.5 | 5         |
| 74 | Generic Protocol for Optimization of Heterologous Protein Production Using Automated Microbioreactor Technology. Journal of Visualized Experiments, 2017, , .                                                                   | 0.3 | 5         |
| 75 | Robust Multiâ€Objective Global Optimization of Stochastic Processes With a Case Study in Gradient<br>Elution Chromatography. Biotechnology Journal, 2018, 13, 1700257.                                                          | 3.5 | 5         |
| 76 | Simulation of differential-algebraic equation systems with optimization criteria embedded in Modelica. Computers and Chemical Engineering, 2020, 140, 106920.                                                                   | 3.8 | 5         |
| 77 | How Do Operational and Design Parameters Effect Biomass Productivity in a Flat-Panel<br>Photo-Bioreactor? A Computational Analysis. Processes, 2021, 9, 1387.                                                                   | 2.8 | 5         |
| 78 | Surface bound adsorption in a microfluidic T-sensor: Numerical comparison and optimization of 2D and 3D models and of sensor designs. Sensors and Actuators B: Chemical, 2012, 170, 75-81.                                      | 7.8 | 4         |
| 79 | Model Based Quantification of Internal Flow Distributions from Breakthrough Curves of Flat Sheet<br>Membrane Chromatography Modules. Chemical Engineering and Technology, 2010, 33, 960-968.                                    | 1.5 | 3         |
| 80 | Model-Based Design of Long-Distance Tracer Transport Experiments in Plants. Frontiers in Plant<br>Science, 2018, 9, 773.                                                                                                        | 3.6 | 3         |
| 81 | Analysis of the local wellâ€posedness of optimizationâ€constrained differential equations by local optimality conditions. AICHE Journal, 2020, 66, e16548.                                                                      | 3.6 | 3         |
| 82 | Customizable Visualization on Demand for Hierarchically Organized Information in Biochemical Networks. Lecture Notes in Computer Science, 2010, , 163-174.                                                                      | 1.3 | 3         |
| 83 | Continuous enzymatic stirred tank reactor cascade with unconventional medium yielding high concentrations of ( <i>S</i> )-2-hydroxyphenyl propanone and its derivatives. Catalysis Science and Technology, 2021, 11, 7886-7897. | 4.1 | 3         |
| 84 | A Multi-Scale Modeling Concept and Computational Tools for the Integrative Analysis of Stationary<br>Metabolic Data. Journal of Integrative Bioinformatics, 2004, 1, 38-51.                                                     | 1.5 | 2         |
| 85 | Development of a 3D Model for Packed Bed Liquid Chromatography in Micro-columns. , 2009, , .                                                                                                                                    |     | 2         |
| 86 | Chromatography Models with Langmuir and Steric Mass Action Adsorption Isotherms are of Differential Index One. , 2010, , .                                                                                                      |     | 2         |
| 87 | Kriging based iterative parameter estimation procedure for biotechnology applications with nonlinear trend functions. IFAC-PapersOnLine, 2015, 48, 574-579.                                                                     | 0.9 | 2         |
| 88 | Consecutive Threeâ€component Synthesis of Phenothiazine Based Merocyanines – Bayesian Optimization,<br>Electronic properties, and DSSC Characteristics. European Journal of Organic Chemistry, 0, , .                           | 2.4 | 2         |
| 89 | Compartment Model of Mixing in a Bubble Trap and Its Impact on Chromatographic Separations.<br>Processes, 2020, 8, 780.                                                                                                         | 2.8 | 1         |
| 90 | Improving Convergence of Derivative-Based Parameter Estimation with Multistart Parameter Clustering Based on DAE Decomposition. , 2009, , .                                                                                     |     | 1         |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Estimation, model discrimination, and experimental design for implicitly given nonlinear models of enzyme catalyzed chemical reactions. Mathematica Slovaca, 2009, 59, . | 0.6 | 0         |
| 92 | Surface bound adsorption in a microfluidic T-sensor: Numerical comparison and optimization of 2D and 3D models. Procedia Engineering, 2010, 5, 1272-1275.                | 1.2 | 0         |
| 93 | Mechanistische und semi-empirische Modellierung inhomogener Flussverteilungen in der<br>Membranchromatographie. Chemie-Ingenieur-Technik, 2012, 84, 1335-1335.           | 0.8 | 0         |
| 94 | A Finite Element Method for Spatially Resolved Simulation of Packed Bed Chromatography.<br>Proceedings in Applied Mathematics and Mechanics, 2013, 13, 511-512.          | 0.2 | 0         |
| 95 | Diffusion in crowded cytoplasm-like environment. New Biotechnology, 2014, 31, S163.                                                                                      | 4.4 | 0         |
| 96 | Robust multi-objective process design. New Biotechnology, 2016, 33, S27.                                                                                                 | 4.4 | 0         |
| 97 | Integrated modeling of transport processes, buffer equilibria and biochemical reactions in chromatography columns using CADET. New Biotechnology, 2016, 33, S28-S29.     | 4.4 | 0         |