Antonio Luis Medina-Castillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2542414/publications.pdf

Version: 2024-02-01

48 papers

1,145 citations

20 h-index 32 g-index

48 all docs 48 docs citations

48 times ranked

1444 citing authors

#	Article	IF	CITATIONS
1	Antibacterial Effect of Functionalized Polymeric Nanoparticles on Titanium Surfaces Using an In Vitro Subgingival Biofilm Model. Polymers, 2022, 14, 358.	4.5	7
2	Doxycycline-Doped Polymeric Membranes Induced Growth, Differentiation and Expression of Antigenic Phenotype Markers of Osteoblasts. Polymers, 2021, 13, 1063.	4.5	14
3	Doxycycline-doped membranes induced osteogenic gene expression on osteoblastic cells. Journal of Dentistry, 2021, 109, 103676.	4.1	15
4	Melatonin-doped polymeric nanoparticles reinforce and remineralize radicular dentin: Morpho-histological, chemical and biomechanical studies. Dental Materials, 2021, 37, 1107-1120.	3.5	9
5	Melatonin-doped polymeric nanoparticles induce high crystalline apatite formation in root dentin. Dental Materials, 2021, 37, 1698-1713.	3.5	4
6	Novel Pastes Containing Polymeric Nanoparticles for Dentin Hypersensitivity Treatment: An In Vitro Study. Nanomaterials, 2021, 11, 3150.	4.1	4
7	Polymeric nanoparticles for endodontic therapy. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103606.	3.1	24
8	Protein adsorption and bioactivity of functionalized electrospun membranes for bone regeneration. Journal of Dentistry, 2020, 102, 103473.	4.1	7
9	State of the Art on Biomaterials for Soft Tissue Augmentation in the Oral Cavity. Part II: Synthetic Polymers-Based Biomaterials. Polymers, 2020, 12, 1845.	4.5	9
10	Thermodynamic Principles of Precipitation Polymerization and Role of Fractal Nanostructures in the Particle Size Control. Macromolecules, 2020, 53, 5687-5700.	4.8	21
11	Polymeric nanoparticles protect the resin-dentin bonded interface from cariogenic biofilm degradation. Acta Biomaterialia, 2020, 111, 316-326.	8.3	24
12	Ex vivo investigations on bioinspired electrospun membranes as potential biomaterials for bone regeneration. Journal of Dentistry, 2020, 98, 103359.	4.1	17
13	Zn-containing polymer nanogels promote cervical dentin remineralization. Clinical Oral Investigations, 2019, 23, 1197-1208.	3.0	13
14	Antibacterial effects of polymeric PolymP-n Active nanoparticles. An in vitro biofilm study. Dental Materials, 2019, 35, 156-168.	3.5	37
15	Ionâ€modified nanoparticles induce different apatite formation in cervical dentine. International Endodontic Journal, 2018, 51, 1019-1029.	5. O	8
16	A multifunctional material based on co-electrospinning for developing biosensors with optical oxygen transduction. Analytica Chimica Acta, 2018, 1015, 66-73.	5.4	17
17	Evaluation of two sterically directed attachments of biomolecules on a coaxial nanofibre membrane to improve the development of optical biosensors. Talanta, 2018, 187, 83-90.	5. 5	5
18	Improved reactive nanoparticles to treat dentin hypersensitivity. Acta Biomaterialia, 2018, 72, 371-380.	8.3	47

#	Article	IF	Citations
19	Effect of functionalized PHEMA micro―and nanoâ€particles on the viscoelastic properties of fibrin–agarose biomaterials. Journal of Biomedical Materials Research - Part A, 2018, 106, 738-745.	4.0	5
20	Silver improves collagen structure and stability at demineralized dentin: A dynamic-mechanical and Raman analysis. Journal of Dentistry, 2018, 79, 61-67.	4.1	13
21	Modified Polymeric Nanoparticles Exert In Vitro Antimicrobial Activity Against Oral Bacteria. Materials, 2018, 11, 1013.	2.9	26
22	lons-modified nanoparticles affect functional remineralization and energy dissipation through the resin-dentin interface. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 62-79.	3.1	37
23	Novel potential scaffold for periodontal tissue engineering. Clinical Oral Investigations, 2017, 21, 2695-2707.	3.0	28
24	A microfluidic device with integrated coaxial nanofibre membranes for optical determination of glucose. Sensors and Actuators B: Chemical, 2017, 250, 156-161.	7.8	14
25	Bioactive Polymeric Nanoparticles for Periodontal Therapy. PLoS ONE, 2016, 11, e0166217.	2.5	53
26	A novel optical biosensor for direct and selective determination of serotonin in serum by Solid Surface-Room Temperature Phosphorescence. Biosensors and Bioelectronics, 2016, 82, 217-223.	10.1	26
27	Zinc-modified nanopolymers improve the quality of resin–dentin bonded interfaces. Clinical Oral Investigations, 2016, 20, 2411-2420.	3.0	31
28	Novel optical sensing film based on a functional nonwoven nanofibre mat for an easy, fast and highly selective and sensitive detection of tryptamine in beer. Biosensors and Bioelectronics, 2016, 79, 600-607.	10.1	44
29	Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Advances, 2015, 5, 20639-20649.	3.6	104
30	Evaluation of different functional groups for covalent immobilization of enzymes in the development of biosensors with oxygen optical transduction. Analytical Methods, 2015, 7, 2943-2949.	2.7	11
31	Polymer Nanocarriers for Dentin Adhesion. Journal of Dental Research, 2014, 93, 1258-1263.	5.2	47
32	A sensing microfibre mat produced by electrospinning for the turn-on luminescence determination of Hg2+ in water samples. Sensors and Actuators B: Chemical, 2014, 195, 8-14.	7.8	21
33	A new highly sensitive and versatile optical sensing film for controlling CO2 in gaseous and aqueous media. Sensors and Actuators B: Chemical, 2013, 184, 281-287.	7.8	18
34	Hg2+-selective sensing film based on the incorporation of a rhodamine 6G derivative into a novel hydrophilic water-insoluble copolymer. Analytical Methods, 2013, 5, 6642.	2.7	13
35	Novel synthetic route for covalent coupling of biomolecules on superâ€paramagnetic hybrid nanoparticles. Journal of Polymer Science Part A, 2012, 50, 3944-3953.	2.3	26
36	Atomâ€Transfer Radical Polymerisation (ATRP) as a Tool for the Development of Optical Sensing Phases. Israel Journal of Chemistry, 2012, 52, 264-275.	2.3	6

#	ARTICLE	IF	CITATIONS
37	Design and synthesis by ATRP of novel, water-insoluble, lineal copolymers and their application in the development of fluorescent and pH-sensing nanofibres made by electrospinning. Journal of Materials Chemistry, 2011, 21, 6742.	6.7	18
38	Mini-emulsion solvent evaporation: a simple and versatile way to magnetic nanosensors. Mikrochimica Acta, 2011, 172, 299-308.	5.0	20
39	Oneâ€Step Fabrication of Multifunctional Coreâ€Shell Fibres by Coâ€Electrospinning. Advanced Functional Materials, 2011, 21, 3488-3495.	14.9	36
40	Optical Sensors: Oneâ€Step Fabrication of Multifunctional Coreâ€Shell Fibres by Coâ€Electrospinning (Adv.) Tj E	TQq0,00	rgBT /Overlo
41	Synthesis and characterization of a molecularly imprinted polymer optosensor for TEXs-screening in drinking water. Biosensors and Bioelectronics, 2011, 26, 3331-3338.	10.1	13
42	Synthesis of a novel polyurethane-based-magnetic imprinted polymer for the selective optical detection of 1-naphthylamine in drinking water. Biosensors and Bioelectronics, 2011, 26, 4520-4525.	10.1	40
43	Luminescent organotin complexes with the ligand benzil bis(benzoylhydrazone). Journal of Organometallic Chemistry, 2010, 695, 2305-2310.	1.8	12
44	Micrometer and Submicrometer Particles Prepared by Precipitation Polymerization: Thermodynamic Model and Experimental Evidence of the Relation between Flory's Parameter and Particle Size. Macromolecules, 2010, 43, 5804-5813.	4.8	63
45	Novel Strategy To Design Magnetic, Molecular Imprinted Polymers with Well-Controlled Structure for the Application in Optical Sensors. Macromolecules, 2010, 43, 55-61.	4.8	60
46	A semi-empirical model to simplify the synthesis of homogeneous and transparent cross-linked polymers and their application in the preparation of optical sensing films. Biosensors and Bioelectronics, 2009, 25, 442-449.	10.1	16
47	A rapid, sensitive screening test for polycyclic aromatic hydrocarbons applied to Antarctic water. Chemosphere, 2007, 67, 903-910.	8.2	16
48	Engineering of efficient phosphorescent iridium cationic complex for developing oxygen-sensitive polymeric and nanostructured films. Analyst, The, 2007, 132, 929.	3.5	46