
Brian Gleeson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/254221/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal Barrier Coatings for Aeroengine Applications. Journal of Propulsion and Power, 2006, 22, 375-383.	1.3	241
2	Effects of Platinum on the Interdiffusion and Oxidation Behavior of Ni-Al-Based Alloys. Materials Science Forum, 2004, 461-464, 213-222.	0.3	208
3	Alloy design strategies for promoting protective oxide-scale formation. Jom, 2000, 52, 16-21.	0.9	174
4	On the growth of Al2O3 scales. Acta Materialia, 2013, 61, 6670-6683.	3.8	140
5	Oxidation of multicomponent two-phase alloys. Oxidation of Metals, 1995, 44, 211-237.	1.0	134
6	Meet me where i'm gazing. , 2014, , .		134
7	Site preference of transition metal elements in Ni3Al. Scripta Materialia, 2006, 55, 433-436.	2.6	133
8	Alumina Scale Formation: A New Perspective. Journal of the American Ceramic Society, 2011, 94, s146.	1.9	131
9	Site preference of ternary alloying elements in Ni3Al: A first-principles study. Acta Materialia, 2006, 54, 1147-1154.	3.8	130
10	Design of a Fingertip-Mounted Tactile Display with Tangential Skin Displacement Feedback. IEEE Transactions on Haptics, 2010, 3, 297-301.	1.8	115
11	Thermodynamic considerations of the beneficial effect of halogens on the oxidation resistance of TiAl-based alloys. Intermetallics, 2003, 11, 387-398.	1.8	104
12	Effects of Silicon on the Oxidation Behavior of Ni-Base Chromia-Forming Alloys. Oxidation of Metals, 2006, 65, 101-122.	1.0	104
13	Correlation between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 2974-2983.	1.1	103
14	α-NiPt(Al) and phase equilibria in the Ni–Al–Pt system at 1150 °C. Acta Materialia, 2005, 53, 3319-3328.	3.8	99
15	Perception of Direction for Applied Tangential Skin Displacement: Effects of Speed, Displacement, and Repetition. IEEE Transactions on Haptics, 2010, 3, 177-188.	1.8	94
16	Formation of Z-Ti50Al30O20 in the sub-oxide zones of Î ³ -TiAl-based alloys during oxidation at 1000°C. Acta Materialia, 1999, 47, 2937-2949.	3.8	92
17	Effect of Nb on the high-temperature sulfidation behavior of cobalt. Oxidation of Metals, 1989, 31, 209-236.	1.0	82
18	Gestures for industry Intuitive human-robot communication from human observation. , 2013, , .		81

#	Article	IF	CITATIONS
19	The deposition of aluminide and silicide coatings on γ-TiAl using the halide-activated pack cementation method. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3761-3772.	1.1	79
20	Factors Affecting Chromium Carbide Precipitate Dissolution During Alloy Oxidation. Oxidation of Metals, 1998, 50, 139-165.	1.0	78
21	Interdiffusion behavior of Pt-modified γ-Ni + γ′-Ni3Al alloys coupled to Ni-Al-based alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 1769-1775.	1.1	73
22	Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni–Al–Pt systems. Journal of Materials Science, 2009, 44, 1704-1710.	1.7	72
23	A combined first-principles and experimental study of the lattice site preference of Pt in B2 NiAl. Acta Materialia, 2005, 53, 2101-2109.	3.8	71
24	Hot corrosion and oxidation behavior of a novel Pt+Hf-modified γ′-Ni3Al+γ-Ni-based coating. Surface and Coatings Technology, 2006, 201, 3836-3840.	2.2	67
25	A diffusional analysis of the oxidation of binary multiphase alloys. Oxidation of Metals, 1991, 35, 333-348.	1.0	66
26	Alloy phase transformations driven by high temperature corrosion processes. Corrosion Science, 2002, 44, 345-357.	3.0	65
27	The Long-Term, Cyclic-Oxidation Behavior of Selected Chromia-Forming Alloys. Oxidation of Metals, 1998, 49, 373-399.	1.0	61
28	A comprehensive investigation of the sulfidation behavior of binary Co-Mo alloys. Oxidation of Metals, 1990, 33, 425-455.	1.0	59
29	Effects of targeted γ-Ni+γ′-Ni3Al-based coating compositions on oxidation behavior. Surface and Coatings Technology, 2007, 202, 628-631.	2.2	54
30	The Band Structure of Polycrystalline Al ₂ O ₃ and Its Influence on Transport Phenomena. Journal of the American Ceramic Society, 2016, 99, 733-747.	1.9	51
31	Development of Re-based diffusion barrier coatings on nickel based superalloys. Materials and Corrosion - Werkstoffe Und Korrosion, 2005, 56, 923-929.	0.8	50
32	The hot-corrosion behavior of novel CO-deposited chromium-modified aluminide coatings. Oxidation of Metals, 1992, 38, 407-424.	1.0	48
33	Laser Raman spectroscopy: a technique for rapid characterisation of oxide scale layers. Materials Science and Technology, 1998, 14, 373-376.	0.8	48
34	Sulfur Segregation at Al2O3/γ-ÎŧÂ+Âγ′-Ni3Al Interfaces: Effects of Pt, Cr and Hf Additions. Oxidation of Metals, 2009, 72, 109-124.	1.0	48
35	The cyclic oxidation behaviour of α-Cr + β-NiAl alloys with and without trace Zr addition. Corrosion Science, 1997, 39, 639-654.	3.0	45
36	Interdiffusion behaviour in aluminide-coated René 80H at 1150°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 224, 27-32.	2.6	40

#	Article	IF	CITATIONS
37	Initial phase transformation diagram determination for the CD3MN cast duplex stainless steel. Scripta Materialia, 2004, 50, 1351-1354.	2.6	40
38	Phenomenological treatment of multilayer growth. Oxidation of Metals, 1989, 31, 415-429.	1.0	39
39	Early-Stage Oxidation Behavior of Pt-Modified γ′-Ni3Al-Based Alloys with and without Hf Addition. Oxidation of Metals, 2009, 71, 5-19.	1.0	39
40	Effects of 0.1 and 0.2 wt.% aluminium addition to zinc on the interdiffusion between zinc and iron at 400°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 251, 87-93.	2.6	38
41	First-principles study of phase stability in pseudobinary(Ni1â^'xPtx)3Alalloys. Physical Review B, 2005, 72,	1.1	38
42	Early-Stage Oxidation Behavior of γ'-Ni ₃ Al-Based Alloys with and without Pt Addition. Materials Science Forum, 2006, 522-523, 229-238.	0.3	38
43	Reaction morphologies developed by nickel aluminides in type II hot corrosion conditions: The effect of chromium. Corrosion Science, 2015, 101, 32-46.	3.0	38
44	On the Hot Corrosion of Nickel at 700°C. Oxidation of Metals, 2015, 84, 567-584.	1.0	38
45	Isothermal transformation behavior of thermally-grown wüstite. Materials at High Temperatures, 2000, 17, 311-319.	0.5	38
46	Oxidation Behavior of Pt+Hf-Modified γ-Ni +γ'-Ni ₃ Al Alloys. Materials Science Forum, 2006, 522-523, 221-228.	0.3	36
47	Codeposited Chromiumâ€Aluminide Coatings: II . Kinetics and Morphology of Coating Growth. Journal of the Electrochemical Society, 1994, 141, 2690-2698.	1.3	35
48	Isothermal transformation behavior of thermally-grown wüstite. Materials at High Temperatures, 2000, 17, 311-318.	0.5	35
49	Codeposited Chromiumâ€Aluminide Coatings: I . Definition of the Codeposition Regimes. Journal of the Electrochemical Society, 1994, 141, 1464-1471.	1.3	34
50	Determination of isothermal transformation diagrams for sigma-phase formation in cast duplex stainless steels CD3MN and CD3MWCuN. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3377-3386.	1.1	33
51	Compositional effects on the Type I hot corrosion of β-NiAl alloys. Surface and Coatings Technology, 2011, 206, 1552-1557.	2.2	33
52	Quantitative Approach for Determining the Critical Volume Fraction for the Transition from Internal to External Oxidation. Oxidation of Metals, 2015, 83, 187-201.	1.0	33
53	Isothermal nature of martensite formation in Pt-modified β-NiAl alloys. Acta Materialia, 2007, 55, 2433-2441.	3.8	32
54	Cyclic oxidation behaviour of two-phase Niî—,Crî—,Al alloys at 1100°C. Corrosion Science, 1993, 35, 923-929.	3.0	30

#	Article	IF	CITATIONS
55	Effects of Pt on the elastic properties of B2 NiAl: A combined first-principles and experimental study. Acta Materialia, 2006, 54, 2361-2369.	3.8	30
56	Formation of secondary reaction zone in ruthenium bearing nickel based single crystal superalloys with diffusion aluminide coatings. Materials Science and Technology, 2009, 25, 300-308.	0.8	30
57	High Temperature Reaction of MCrAlY Coating Compositions with CaO Deposits. Oxidation of Metals, 2015, 84, 185-209.	1.0	30
58	Calculation of precipitate dissolution zone kinetics in oxidising binary two-phase alloys. Acta Materialia, 1996, 44, 4033-4038.	3.8	29
59	Title is missing!. Oxidation of Metals, 1998, 50, 399-429.	1.0	29
60	A diffusion analysis of transient subsurface γ′-Ni3Al formation during β-NiAl oxidation. Acta Materialia, 2012, 60, 5273-5283.	3.8	28
61	A New Kinetics-Based Approach to Quantifying the Extent of MetastableÂ→ÂStable Phase Transformation in Thermally-Grown Al2O3 Scales. Oxidation of Metals, 2013, 79, 361-381.	1.0	28
62	An extension of Wagner's analysis of competing scale formation. Oxidation of Metals, 1991, 35, 317-332.	1.0	26
63	Creep in α-Al2O3 thermally grown on β-NiAl and NiAlPt alloys. Surface and Coatings Technology, 2007, 202, 608-612.	2.2	26
64	Understanding slow-growing alumina scale mediated by reactive elements: Perspective via local metal-oxygen bonding strength. Scripta Materialia, 2018, 150, 139-142.	2.6	26
65	A first-principles study of the site preference of Cr in B2 NiAl. Scripta Materialia, 2006, 54, 405-410.	2.6	25
66	Planar Hand Motion Guidance Using Fingertip Skin-Stretch Feedback. IEEE Transactions on Haptics, 2014, 7, 121-130.	1.8	25
67	The sulfidation behavior of Co-Mo alloys containing various ternary additions. Oxidation of Metals, 1990, 34, 123-150.	1.0	24
68	Alloy degradation under oxidizing-sulfidizing conditions at elevated temperatures. Materials Research, 2004, 7, 61-69.	0.6	24
69	Scaling of Carbon Steel in Simulated Reheat Furnace Atmospheres. Oxidation of Metals, 2005, 63, 15-31.	1.0	24
70	Kinetic Study of the Competitive Growth Between Î,-Al2O3 and α-Al2O3 During the Early Stages of Oxidation of β-(Ni,Pt)Al Bond Coat Systems: Effects of Low Oxygen Partial Pressure and Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 726-738.	1.1	24
71	Continuous Cooling Transformation in Cast Duplex Stainless Steels CD3MN and CD3MWCuN. Journal of Materials Engineering and Performance, 2008, 17, 234-239.	1.2	23
72	Phase Transformations in Cast Superaustenitic Stainless Steels. Journal of Materials Engineering and Performance, 2009, 18, 1285-1293.	1.2	23

#	Article	IF	CITATIONS
73	Silicon contamination effects in the oxidation of carbide-containing cobalt-chromium alloys. Materials and Corrosion - Werkstoffe Und Korrosion, 1998, 49, 855-863.	0.8	22
74	Rapid Growth of SiO2 Nanofibers on Silicon-Bearing Alloys. Oxidation of Metals, 2001, 56, 375-394.	1.0	22
75	A combined mapping process for the development of platinum-modified Ni-based superalloys. Jom, 2010, 62, 48-53.	0.9	22
76	The Effect of Microstructure on the Type II Hot Corrosion of Ni-Base MCrAlY Alloys. Oxidation of Metals, 2013, 80, 125-146.	1.0	22
77	A combined first-principles/CALPHAD modeling of the Al–Ir system. Acta Materialia, 2006, 54, 4101-4110.	3.8	21
78	Structural Stability of Platinum-Group-Metal-Modified γÂ+Âγ′ Ni-Base Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1529-1540.	1.1	21
79	Surface segregation of Pt in γ′-Ni3Al: A first-principles study. Acta Materialia, 2007, 55, 1641-1647.	3.8	20
80	Experimental study and thermodynamic modeling of the Al–Co–Cr–Ni system. Science and Technology of Advanced Materials, 2015, 16, 055001.	2.8	20
81	Interdiffusion in Pt-Containing γ-Ni and γ′-Ni ₃ Al Alloys at 1150°C. Materials Transactions, 2008, 49, 1550-1557.	0.4	19
82	Assessment of the Detrimental Effects of Steam on Al2O3-Scale Establishment. Oxidation of Metals, 2015, 83, 607-627.	1.0	19
83	Co-deposited chromium-aluminide coatings. III. Origins of non- equilibrium effects. Surface and Coatings Technology, 1997, 88, 165-171.	2.2	18
84	Effects of Cr on the elastic properties of B2 NiAl: A first-principles study. Scripta Materialia, 2006, 55, 759-762.	2.6	18
85	Microstructural Evolution of Secondary Phases in the Cast Duplex Stainless Steels CD3MN and CD3MWCuN. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 203-211.	1.1	18
86	Thermodynamics and Theory of External and Internal Oxidation of Alloys. , 2010, , 180-194.		18
87	Reinterpretation of Type II Hot Corrosion of Co-Base Alloys Incorporating Synergistic Fluxing. Oxidation of Metals, 2018, 90, 527-553.	1.0	18
88	A new solidâ€state mode of hot corrosion at temperatures below 700°C. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1346-1359.	0.8	17
89	X-ray photoelectron spectroscopy studies of the early-stage oxidation behavior of (Pt, Ni)3Al(111) surfaces in air. Surface Science, 2008, 602, 205-215.	0.8	16
90	Compositional Factors Affecting the Oxidation Behavior of Pt-Modified γ-Ni+γ'-Ni ₃ Al-Based Alloys and Coatings. Materials Science Forum, 0, 595-598, 239-247.	0.3	16

#	Article	IF	CITATIONS
91	Modes of Deposit-Induced Accelerated Attack of MCrAlY Systems at 1100°C. Oxidation of Metals, 2017, 87, 249-270.	1.0	16
92	Effects of Hf, Y, and Zr on Alumina Scale Growth on NiAlCr and NiAlPt Alloys. Oxidation of Metals, 2019, 92, 303-313.	1.0	15
93	A new Ti-rich ternary phase in the Ti-Al-O system. Materials Letters, 1995, 22, 125-129.	1.3	14
94	Segregation of Pt at clean surfaces of (Pt, Ni)3Al. Surface Science, 2007, 601, 376-380.	0.8	14
95	Steam Effects on the Oxidation Behaviour of Al2O3-Scale Forming Ni-Based Alloys. Oxidation of Metals, 2013, 79, 613-625.	1.0	14
96	First-Principles Calculations, Experimental Study, and Thermodynamic Modeling of the Al-Co-Cr System. PLoS ONE, 2015, 10, e0121386.	1.1	14
97	Evaluation of the hot corrosion resistance of commercial β-NiAl and developmental γ′-Ni3Al+γ-Ni-based coatings. Surface and Coatings Technology, 2007, 202, 643-647.	2.2	13
98	The Effect of Environmental Sulfur on the Establishment and Structural Stability of Alumina Scales. Oxidation of Metals, 2013, 80, 517-527.	1.0	13
99	On the Reaction Mechanism of MCrAlY Alloys with Oxide–Sulfate Deposits at 1100°C. Oxidation of Metals, 2016, 86, 385-406.	1.0	13
100	The development of Fe–Zn intermetallic compounds in solid Fe/Zn and Fe/Zn–Al diffusion couples during short-term annealing at 400°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 264, 201-209.	2.6	12
101	Pt and Hf Additions to NiAl Bond Coats and their Effect on the Lifetime of Thermal Barrier Coatings. Materials Science Forum, 2003, 426-432, 209-214.	0.3	12
102	Mechanistic aspects of Pt-modified β-NiAl alloy oxidation. Materials at High Temperatures, 2009, 26, 273-280.	0.5	12
103	Effect of environmental sulfur on the structure of alumina scales formed on Ni-base alloys. Acta Materialia, 2015, 97, 41-49.	3.8	11
104	A Thermodynamic Approach to Guide Reactive Element Doping: Hf Additions to NiCrAl. Oxidation of Metals, 2017, 87, 297-310.	1.0	11
105	Effects of Minor Elements on the Cyclic-Oxidation Behavior of Commercial Fe-Base 800-Series Alloys. Oxidation of Metals, 2004, 62, 45-69.	1.0	10
106	The effect of Pt on Ni3Al surface oxidation at low-pressures. Surface Science, 2007, 601, 146-154.	0.8	10
107	Phase Transformation Behavior of Al2O3 Scale Formed on Pt-Modified γ′-Ni3Al-Based Alloys With and Without Hf Addition. Oxidation of Metals, 2012, 77, 237-251.	1.0	10
108	The Effect of Pt Content on the Scale Development on β-NiAl at Very Early Oxidation Stages. Oxidation of Metals, 2017, 87, 311-319.	1.0	10

#	Article	IF	CITATIONS
109	Oxygen tracer study of the high-temperature oxidation of pure and impure cobalt. Oxidation of Metals, 1989, 32, 379-390.	1.0	9
110	Oxidation Resistance of Pt Containing γ-Ni+γ′-Ni3Al Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 34-40.	0.2	9
111	Erratum to "Alumina Scale Formation: A New Perspectiveâ€: Journal of the American Ceramic Society, 2011, 94, 2698-2698.	1.9	9
112	Compositional Factors Affecting Protective Alumina Formation Under Type II Hot Corrosion Conditions. Oxidation of Metals, 2013, 80, 541-552.	1.0	9
113	Extreme Temperature Coatings for Future Gas Turbine Engines. Journal of Engineering for Gas Turbines and Power, 2014, 136, .	0.5	9
114	Kinetics of Al2O3-Scale Growth by Oxidation and Dissolution in Molten Silicate. Oxidation of Metals, 2017, 87, 527-539.	1.0	9
115	A first-principles based description of the Hf-Ni system supported by high-temperature synchrotron experiments. Thermochimica Acta, 2018, 668, 142-151.	1.2	9
116	Oxidation Behavior of γ′-Ni3Al-Based Ni–20Al–5Cr Alloys With and Without Reactive Elements Under Different Heating Conditions. Oxidation of Metals, 2019, 92, 137-150.	1.0	9
117	Mechanism behind the Inhibiting Effect of CO ₂ on the Oxidation of Al–Mg Alloys. Industrial & Engineering Chemistry Research, 2019, 58, 1434-1442.	1.8	9
118	Effects of Sulphate Deposits on Corrosion Behaviour of Fe-Based Alloys in Wet CO2 Gas at 750°C. Oxidation of Metals, 2021, 95, 23-43.	1.0	9
119	Effects of Platinum on the Hot Corrosion Behavior of Hf-Modified γ′-Ni3AlÂ+Âγ-Ni-Based Alloys. Oxidation of Metals, 2011, 76, 43-55.	1.0	8
120	Effects of sulphate deposits on corrosion behaviour of Ni-base alloys in wet CO2 gas at 750 ŰC. Corrosion Science, 2021, 181, 109227.	3.0	8
121	Role of Elemental Segregation on the Oxidation Behavior of Additively Manufactured Alloy 625. Jom, 2022, 74, 1698-1706.	0.9	8
122	Human behavioural responses to robot head gaze during robot-to-human handovers. , 2014, , .		7
123	Alloying-Element Loss During High-Temperature Processing of a Nickel-Base Superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 962-979.	1.1	7
124	Effects of Pt on the short-term oxidation behavior ofγ-Ni+γ′-Ni3Al alloys. Materials at High Temperatures, 2005, 22, 321-328.	0.5	6
125	Phase Stability and Oxidation Behavior of an Alumina Scale-Forming NiCrAlY Alloy. Oxidation of Metals, 2010, 74, 179-191.	1.0	6

126 Extreme Temperature Coatings for Future Gas Turbine Engines. , 2013, , .

6

#	Article	IF	CITATIONS
127	Use of Microanalysis to Better Understand the High-Temperature Corrosion Behavior of Chromium Exposed to Multi-Oxidant Environments. Oxidation of Metals, 2019, 91, 11-31.	1.0	6
128	On the early stages of scale development on Ni–22Al–30Pt with and without Hf additions at 1150°C. Materials at High Temperatures, 2012, 29, 70-80.	0.5	5
129	Initial Stages of Na2SO4-Induced Degradation of β-Ni–36Al at 700°C: I-Intrinsic Behavior. Oxidation of Metals, 2017, 88, 649-667.	1.0	5
130	The kinetics and mechanism of the sulfidation of Coî—,Mo alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 120-121, 39-45.	2.6	4
131	On the phase composition changes during high temperature oxidation of Pt-modified β-NiAl at 1150°C. Materials at High Temperatures, 2012, 29, 107-115.	0.5	4
132	Effect of environmental sulphur on structure of alumina scales formed on Ni-base alloys. Materials at High Temperatures, 2015, 32, 10-15.	0.5	4
133	Promotion of the Al2O3-Scale Formation on Ni–Cr–Al Alloys via the Fluorine Effect. Oxidation of Metals, 2015, 83, 335-349.	1.0	4
134	Still plenty to explore. Nature Materials, 2018, 17, 574-576.	13.3	4
135	Effects of 2Âppm Beryllium on the Oxidation of a 5XXX Aluminum Alloy at Temperatures Between 500 and 750°C. Minerals, Metals and Materials Series, 2017, , 1465-1474.	0.3	4
136	Do Mass Transport Kinetics Always Control Al2O3 Scale Growth? An Alternative Explanation for the Efficacy of the Reactive-Element Effect. Oxidation of Metals, 2020, 94, 1-4.	1.0	3
137	Fuel Economy Retention in Passenger Car Diesel Engines A Review of the First Test Development Undertaken by New CEC. , 2004, , .		2
138	NETL Research Efforts on Development and Integration of Advanced Material Systems and Airfoil Cooling Configurations for Future Land-Based Gas Turbine Engines. , 2014, , .		2
139	Early-Stage Oxidation Behavior of γ'-Ni ₃ Al-Based Alloys with and without Pt Addition. Materials Science Forum, 0, , 229-238.	0.3	2
140	Effects of CO2 Cover Gas and Yttrium Additions on the Oxidation of AlMg Alloys. Minerals, Metals and Materials Series, 2019, , 1025-1032.	0.3	1
141	Laboratory-Scale Replication of Deposit-Induced Degradation of High-Temperature Turbine Components. Minerals, Metals and Materials Series, 2020, , 789-797.	0.3	1
142	Solid-State Deposit-Induced Corrosion of a Second-Generation Nickel-Based Superalloy Caused by CaO and CaSO4 Deposits. Oxidation of Metals, 2022, 98, 43-63.	1.0	1
143	The effect of platinum additions on the oxidation of directionally-solidified Ni-Cr-Al-Y-Cr ₃ C ₂ alloys at 1,100 and 1,200°C. Materials at High Temperatures, 1999, 16, 15-26.	0.5	0
144	Correlations between structure and chemical composition on oxidized (Pt,Ni)3Al(111) surfaces. Surface Science, 2008, 602, 1092-1100.	0.8	0

#	Article	IF	CITATIONS
145	Development and Assessment of Coatings for Future Power Generation Turbines. , 2012, , .		0
146	STEM Characterization of Metal Dusting Corrosion in Ni-based Alloy 600 and Fe-based Alloy 800H Exposed to a High Pressure Environment. Microscopy and Microanalysis, 2019, 25, 2332-2333.	0.2	0
147	Celebrating over 50 Years of Oxidation of Metals and Looking Forward to Its Next Half Century. Oxidation of Metals, 2021, 95, 333-334.	1.0	0
148	Embedding Tactile Feedback into Handheld Devices: An Aperture-Based Restraint for the Finger or Thumb. Lecture Notes in Computer Science, 2010, , 297-302.	1.0	0
149	Evolution of the structure of NiO and CoO scales. , 1990, , 16-27.		0