Gamal M El Maghraby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/254209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liposomes and skin: From drug delivery to model membranes. European Journal of Pharmaceutical Sciences, 2008, 34, 203-222.	1.9	521
2	Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. International Journal of Pharmaceutics, 2000, 196, 63-74.	2.6	236
3	Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: Effects of cosurfactants. International Journal of Pharmaceutics, 2008, 355, 285-292.	2.6	214
4	Can drug-bearing liposomes penetrate intact skin?. Journal of Pharmacy and Pharmacology, 2010, 58, 415-429.	1.2	185
5	Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. International Journal of Pharmaceutics, 2004, 276, 143-161.	2.6	181
6	Skin Delivery of Oestradiol from Deformable and Traditiona Liposomes: Mechanistic Studiesâ€. Journal of Pharmacy and Pharmacology, 2010, 51, 1123-1134.	1.2	176
7	Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in-vitro. Journal of Pharmacy and Pharmacology, 2010, 53, 1069-1077.	1.2	173
8	Skin delivery of oestradiol from lipid vesicles: importance of liposome structure. International Journal of Pharmaceutics, 2000, 204, 159-169.	2.6	120
9	Drug interaction and location in liposomes: correlation with polar surface areas. International Journal of Pharmaceutics, 2005, 292, 179-185.	2.6	110
10	Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes. Journal of Pharmacy and Pharmacology, 2010, 53, 1311-1322.	1.2	91
11	Phase transition water-in-oil microemulsions as ocular drug delivery systems: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 2007, 328, 65-71.	2.6	87
12	Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: Effect of phase transition. Colloids and Surfaces B: Biointerfaces, 2010, 75, 595-600.	2.5	84
13	Aerosil as a novel co-crystal co-former for improving the dissolution rate of hydrochlorothiazide. International Journal of Pharmaceutics, 2015, 478, 773-778.	2.6	66
14	Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opinion on Drug Delivery, 2009, 6, 149-163.	2.4	65
15	Mucoadhesive Polymeric Hydrogels for Nasal Delivery of Acyclovir. Drug Development and Industrial Pharmacy, 2009, 35, 352-362.	0.9	56
16	Mechanisms of action of novel skin penetration enhancers: Phospholipid versus skin lipid liposomes. International Journal of Pharmaceutics, 2005, 305, 90-104.	2.6	54
17	Optimization of niosomes for enhanced antibacterial activity and reduced bacterial resistance: <i>in vitro</i> and <i>in vivo</i> evaluation. Expert Opinion on Drug Delivery, 2015, 12, 163-180.	2.4	53
18	Fast disintegrating tablets of nisoldipine for intra-oral administration. Pharmaceutical Development and Technology, 2014, 19, 641-650.	1.1	48

GAMAL M EL MAGHRABY

#	Article	IF	CITATIONS
19	Penetration enhancers in proniosomes as a new strategy for enhanced transdermal drug delivery. Saudi Pharmaceutical Journal, 2015, 23, 67-74.	1.2	45
20	Essential oils in niosomes for enhanced transdermal delivery of felodipine. Pharmaceutical Development and Technology, 2019, 24, 157-165.	1.1	43
21	Chitosan coated nanostructured lipid carriers for enhanced in vivo efficacy of albendazole against Trichinella spiralis. Carbohydrate Polymers, 2020, 232, 115826.	5.1	43
22	Synergistic Enhancement of Itraconazole Dissolution by Ternary System Formation with Pluronic F68 and Hydroxypropylmethylcellulose. Scientia Pharmaceutica, 2009, 77, 401-417.	0.7	42
23	Development and validation of an HPLC–UV method for the quantification of carbamazepine in rabbit plasma. Saudi Pharmaceutical Journal, 2012, 20, 29-34.	1.2	40
24	Transdermal Delivery of Tadalafil. I. Effect of Vehicles on Skin Permeation. Drug Development and Industrial Pharmacy, 2009, 35, 329-336.	0.9	36
25	Sucralose as co-crystal co-former for hydrochlorothiazide: development of oral disintegrating tablets. Drug Development and Industrial Pharmacy, 2016, 42, 1225-1233.	0.9	36
26	Enhanced Efficacy of Some Antibiotics in Presence of Silver Nanoparticles Against Multidrug Resistant Pseudomonas aeruginosa Recovered From Burn Wound Infections. Frontiers in Microbiology, 2021, 12, 648560.	1.5	30
27	The effect of ciprofloxacin and clarithromycin on sildenafil oral bioavailability in human volunteers. Biopharmaceutics and Drug Disposition, 2006, 27, 103-110.	1.1	29
28	Development of modified <i>in situ</i> gelling oral liquid sustained release formulation of dextromethorphan. Drug Development and Industrial Pharmacy, 2012, 38, 971-978.	0.9	29
29	Colloidal carriers for extended absorption window of furosemide. Journal of Pharmacy and Pharmacology, 2016, 68, 324-332.	1.2	29
30	Eutexia for enhanced dissolution rate and anti-inflammatory activity of nonsteroidal anti-inflammatory agents: Caffeine as a melting point modulator. International Journal of Pharmaceutics, 2019, 563, 395-405.	2.6	29
31	Niosomes for oral delivery of nateglinide: <i>in situ–in vivo</i> correlation. Journal of Liposome Research, 2018, 28, 209-217.	1.5	28
32	Microemulsion for simultaneous transdermal delivery of benzocaine and indomethacin: <i>in vitro</i> and <i>in vivo</i> evaluation. Drug Development and Industrial Pharmacy, 2014, 40, 1637-1644.	0.9	27
33	Xylitol as a potential co-crystal co-former for enhancing dissolution rate of felodipine: preparation and evaluation of sublingual tablets. Pharmaceutical Development and Technology, 2018, 23, 454-463.	1.1	27
34	Intestinal absorption and presystemic disposition of sildenafil citrate in the rabbit: evidence for site-dependent absorptive clearance. Biopharmaceutics and Drug Disposition, 2006, 27, 93-102.	1.1	26
35	Evaluation of the efficacy and safety of combinations of hydroquinone, glycolic acid, and hyaluronic acid in the treatment of melasma. Journal of Cosmetic Dermatology, 2015, 14, 113-123.	0.8	25
36	Optimization of eugenol microemulsion for transdermal delivery of indomethacin. Journal of Drug Delivery Science and Technology, 2018, 48, 311-318.	1.4	23

#	Article	IF	CITATIONS
37	Inhibition of Co-Crystallization of Olmesartan Medoxomil and Hydrochlorothiazide for Enhanced Dissolution Rate in Their Fixed Dose Combination. AAPS PharmSciTech, 2019, 20, 3.	1.5	23
38	Self dispersing mixed micelles forming systems for enhanced dissolution and intestinal permeability of hydrochlorothiazide. Colloids and Surfaces B: Biointerfaces, 2017, 149, 206-216.	2.5	22
39	Niosomes for enhanced activity of praziquantel against Schistosoma mansoni: in vivo and in vitro evaluation. Parasitology Research, 2019, 118, 219-234.	0.6	22
40	Vesicular Systems for Intranasal Drug Delivery. Neuromethods, 2010, , 175-203.	0.2	21
41	Efficacy of topical latanoprost versus minoxidil and betamethasone valerate on the treatment of alopecia areata. Journal of Dermatological Treatment, 2018, 29, 55-64.	1.1	21
42	Investigation of self-microemulsifying and microemulsion systems for protection of prednisolone from gamma radiation. Pharmaceutical Development and Technology, 2011, 16, 237-242.	1.1	18
43	Co-crystallization for enhanced dissolution rate of nateglinide: InÂvitro and inÂvivo evaluation. Journal of Drug Delivery Science and Technology, 2017, 38, 9-17.	1.4	18
44	Formulation of acyclovir-loaded solid lipid nanoparticles: design, optimization, and <i>in-vitro</i> characterization. Pharmaceutical Development and Technology, 2019, 24, 1287-1298.	1.1	18
45	Development and evaluation of rapidly dissolving buccal films of naftopidil: <i>in vitro</i> and <i>in vivo</i> evaluation. Drug Development and Industrial Pharmacy, 2019, 45, 1695-1706.	0.9	16
46	Regional difference in intestinal drug absorption as a measure for the potential effect of P-glycoprotein efflux transporters. Journal of Pharmacy and Pharmacology, 2019, 71, 362-370.	1.2	16
47	Microemulsions as Transdermal Drug Delivery Systems. Current Nanoscience, 2012, 8, 504-511.	0.7	15
48	Lidocaine as eutectic forming drug for enhanced transdermal delivery of nonsteroidal anti-inflammatory drugs. Journal of Drug Delivery Science and Technology, 2021, 61, 102338.	1.4	15
49	Effect of water-in-oil microemulsions and lamellar liquid crystalline systems on the precorneal tear film of albino New Zealand rabbits. Clinical Ophthalmology, 2008, 2, 129.	0.9	14
50	Liposomes for enhanced cytotoxic activity of bleomycin. Drug Development Research, 2011, 72, 265-273.	1.4	14
51	Development and evaluation of glibenclamide floating tablet with optimum release. Journal of Drug Delivery Science and Technology, 2015, 27, 28-36.	1.4	14
52	Effects of Nigella sativa, Lepidium sativum and Trigonella foenum-graecum on sildenafil disposition in beagle dogs. European Journal of Drug Metabolism and Pharmacokinetics, 2015, 40, 219-224.	0.6	14
53	Formulation and evaluation of simvastatin buccal film. Journal of Applied Pharmaceutical Science, 0, , 070-077.	0.7	14
54	Investigation of in situ gelling alginate formulations as a sustained release vehicle for co-precipitates of dextromethrophan and Eudragit S 100. Acta Pharmaceutica, 2014, 64, 29-44.	0.9	13

#	Article	IF	CITATIONS
55	Controlled precipitation for enhanced dissolution rate of flurbiprofen: development of rapidly disintegrating tablets. Drug Development and Industrial Pharmacy, 2017, 43, 1430-1439.	0.9	13
56	Ocular films versus film-forming liquid systems for enhanced ocular drug delivery. Drug Delivery and Translational Research, 2021, 11, 1084-1095.	3.0	13
57	Liposomes for Enhanced Cellular Uptake of Anticancer Agents. Current Drug Delivery, 2020, 17, 861-873.	0.8	13
58	Occlusive and Non-Occlusive Application of Microemulsion for Transdermal Delivery of Progesterone: Mechanistic Studies. Scientia Pharmaceutica, 2012, 80, 765-778.	0.7	12
59	Effect of pharmaceutical excipients on the permeability of P-glycoprotein substrate. Journal of Drug Delivery Science and Technology, 2014, 24, 491-495.	1.4	12
60	Development of liquid oral sustained release formulations of nateglinide: InÂvitro and inÂvivo evaluation. Journal of Drug Delivery Science and Technology, 2015, 29, 70-77.	1.4	12
61	Co-crystallization for enhanced dissolution rate of bicalutamide: preparation and evaluation of rapidly disintegrating tablets. Drug Development and Industrial Pharmacy, 2019, 45, 1215-1223.	0.9	12
62	Enhancement of Dissolution Rate and Intestinal Stability of Clopidogrel Hydrogen Sulfate. European Journal of Drug Metabolism and Pharmacokinetics, 2016, 41, 807-818.	0.6	11
63	Formulation of clarithromycin floating microspheres for eradication of Helicobacter pylori. Journal of Drug Delivery Science and Technology, 2017, 41, 213-221.	1.4	11
64	Peceosomes for oral delivery of glibenclamide: InÂvitro in situ correlation. Journal of Drug Delivery Science and Technology, 2017, 41, 303-309.	1.4	9
65	Chitosan-encapsulated niosomes for enhanced oral delivery of atorvastatin. Journal of Drug Delivery Science and Technology, 2021, 66, 102866.	1.4	9
66	Formulation of acyclovir-loaded solid lipid nanoparticles: 2. Brain targeting and pharmacokinetic study. Pharmaceutical Development and Technology, 2019, 24, 1299-1307.	1.1	8
67	Comparative clinical study of the efficacy of intralesional MMR vaccine vs intralesional vitamin D injection in treatment of warts. Journal of Cosmetic Dermatology, 2020, 19, 2033-2040.	0.8	8
68	Effect of neat and binary vehicle systems on the solubility and cutaneous delivery of piperine. Saudi Pharmaceutical Journal, 2018, 26, 162-168.	1.2	7
69	A comparative study between two topical treatments (tranexamic acid and flutamide) in the treatment of patients with melasma. Journal of the Egyptian Women's Dermatologic Society, 2018, 15, 144-150.	0.2	7
70	Preparation of stabilized submicron fenofibrate crystals on niacin as a hydrophilic hydrotropic carrier. Pharmaceutical Development and Technology, 2020, 25, 168-177.	1.1	7
71	Acetone-assisted co-processing of meloxicam with amino acids for enhanced dissolution rate. Pharmaceutical Development and Technology, 2020, 25, 882-891.	1.1	7
72	Smart liquids for oral controlled drug release: An overview of alginate and non-alginate based systems. Journal of Drug Delivery Science and Technology, 2021, 61, 102211.	1.4	7

1

#	Article	IF	CITATIONS
73	Preparation of Liquid Oral Mucoadhesive Gastro-retentive System of Nimodipine. Current Drug Delivery, 2019, 16, 862-871.	0.8	7
74	Niosomal versus nano-crystalline ivermectin against different stages of Trichinella spiralis infection in mice. Parasitology Research, 2021, 120, 2641-2658.	0.6	6
75	d-glucose elicits significant increase in the oral bioavailability of model BCS class III drugs in the rabbit. Journal of Drug Delivery Science and Technology, 2019, 49, 521-526.	1.4	5
76	Nanostructured lipid carriers for enhanced <i>inÂvitro</i> and <i>inÂvivo</i> schistosomicidal activity of praziquantel: effect of charge. Drug Development and Industrial Pharmacy, 2021, 47, 663-672.	0.9	5
77	Microsponges for controlled release and enhanced oral bioavailability of carbamazepine. Journal of Drug Delivery Science and Technology, 2021, 65, 102683.	1.4	5
78	Lopinavir-menthol co-crystals for enhanced dissolution rate and intestinal absorption. Journal of Drug Delivery Science and Technology, 2022, 74, 103587.	1.4	5
79	Evaluation of progesterone permeability from supercritical fluid processed dispersion systems. Pharmaceutical Development and Technology, 2014, 19, 238-246.	1.1	4
80	INTESTINAL ABSORPTION OF EPROSARTAN MESYLATE FROM SELF EMULSIFYING SYSTEM AND CYCLODEXTRIN COMPLEX. International Journal of Pharmacy and Pharmaceutical Sciences, 2017, 9, 302.	0.3	4
81	Vesicular nanostructures for transdermal delivery. , 2018, , 469-490.		4
82	Co-processing of Atorvastatin and Ezetimibe for Enhanced Dissolution Rate: In Vitro and In Vivo Correlation. AAPS PharmSciTech, 2021, 22, 59.	1.5	4
83	Ethanol-assisted kneading of apigenin with arginine for enhanced dissolution rate of apigenin: development of rapidly disintegrating tablets. Pharmaceutical Development and Technology, 2021, 26, 693-700.	1.1	4
84	Occlusive Versus Nonocclusive Application in Transdermal Drug Delivery. , 2017, , 27-33.		3
85	Nanographene oxide for enhanced dissolution rate and antibacterial activity of cefdinir. Journal of Drug Delivery Science and Technology, 2021, 62, 102411.	1.4	3
86	An Experimental Study on the Effect of Pyrimethamine-Loaded Niosomes in the Treatment of Acute Toxoplasmosis. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 542-561.	0.0	3
87	Stratum Corneum Lipid Liposomes: Drug Delivery Systems and Skin Models. , 2016, , 111-119.		2
88	Alginate-chitosan combinations in controlled drug delivery. , 2019, , 339-361.		2
89	Co-processing of nateglinide with meglumine for enhanced dissolution rate: <i>inÂvitro</i> and <i>inÂvivo</i> evaluation. Drug Development and Industrial Pharmacy, 2020, 46, 1676-1683.	0.9	2

90 Phase transition microemulsions as drug delivery systems. , 2018, , 787-803.

6

#	Article	IF	CITATIONS
91	Self-dispersing self-assembling systems for controlled oral delivery of gliclazide. Journal of Drug Delivery Science and Technology, 2021, 66, 102742.	1.4	1
92	FORMULATION AND EVALUATION OF A COLON DRUG DELIVERY SYSTEM CONTAINING DIFLUNISAL. Bulletin of Pharmaceutical Sciences, 2014, 37, 33-49.	0.0	1
93	Self microemulsefying and non-self microemulsefying liquisolid tablet of felodipine. Journal of Applied Pharmaceutical Science, 0, , 125-132.	0.7	1
94	Hydrophilic Sugars for Enhancing Dissolution Rate of Cilostazol: Effect of Wet Co-Processing. Pharmaceutical Sciences, 2020, 27, 111-120.	0.1	1
95	Eudragit coated microemulsion for enhanced efficacy of spiramycin against toxoplasmic encephalitis. Journal of Drug Delivery Science and Technology, 2022, 69, 103137.	1.4	1
96	Transdermal Delivery of Nisoldipine: Refinement of Vehicles. International Journal of Pharmaceutical Compounding, 2015, 19, 152-60.	0.0	1