
Yun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/254207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nature Energy, 2019, 4, 392-398.	39.5	570
2	An Efficient Direct Ammonia Fuel Cell for Affordable Carbon-Neutral Transportation. Joule, 2019, 3, 2472-2484.	24.0	227
3	All-Soluble All-Iron Aqueous Redox-Flow Battery. ACS Energy Letters, 2016, 1, 89-93.	17.4	213
4	A Roadmap to Low ost Hydrogen with Hydroxide Exchange Membrane Electrolyzers. Advanced Materials, 2019, 31, e1805876.	21.0	184
5	Water-Fed Hydroxide Exchange Membrane Electrolyzer Enabled by a Fluoride-Incorporated Nickel–Iron Oxyhydroxide Oxygen Evolution Electrode. ACS Catalysis, 2021, 11, 264-270.	11.2	101
6	High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy and Environmental Science, 2021, 14, 1449-1460.	30.8	100
7	A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nature Nanotechnology, 2022, 17, 629-636.	31.5	50
8	A quaternary-ammonium-functionalized covalent organic framework for anion conduction. CrystEngComm, 2017, 19, 4905-4910.	2.6	49
9	Low-temperature direct ammonia fuel cells: Recent developments and remaining challenges. Current Opinion in Electrochemistry, 2020, 21, 335-344.	4.8	47
10	A shorted membrane electrochemical cell powered by hydrogen to remove CO2 from the air feed of hydroxide exchange membrane fuel cells. Nature Energy, 2022, 7, 238-247.	39.5	24
11	A High-Performance Gas-Fed Direct Ammonia Hydroxide Exchange Membrane Fuel Cell. ACS Energy Letters, 2021, 6, 1996-2002.	17.4	22
12	A Direct Ammonia Fuel Cell with a KOH-Free Anode Feed Generating 180 mW cm ^{â^'2} at 120 °C. Journal of the Electrochemical Society, 2020, 167, 134518.	2.9	19
13	Improving Performance and Durability of Low Temperature Direct Ammonia Fuel Cells: Effect of Backpressure and Oxygen Reduction Catalysts. Journal of the Electrochemical Society, 2021, 168, 014507.	2.9	9
14	Lowâ€Voltage Gaseous HCl Electrolysis with an Iron Redoxâ€Mediated Cathode for Chlorine Regeneration. Angewandte Chemie - International Edition, 2017, 56, 10735-10739.	13.8	7
15	A high-performance 75ÂW direct ammonia fuel cell stack. Cell Reports Physical Science, 2022, 3, 100829.	5.6	6
16	Lowâ€Voltage Gaseous HCl Electrolysis with an Iron Redoxâ€Mediated Cathode for Chlorine Regeneration. Angewandte Chemie, 2017, 129, 10875-10879.	2.0	3
17	Hydrogen-powered Electrochemically-driven CO ₂ Removal from Air Containing 400 to 5000 ppm CO ₂ . Journal of the Electrochemical Society, 2022, 169, 073503.	2.9	1