Joseph N Ryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2541994/publications.pdf

Version: 2024-02-01

84 papers

8,479 citations

51 h-index 83 g-index

85 all docs 85 docs citations

85 times ranked 7290 citing authors

#	Article	IF	CITATIONS
1	Mine Water Use, Treatment, and Reuse in the United States: A Look at Current Industry Practices and Select Case Studies. ACS ES&T Engineering, 2022, 2, 391-408.	3.7	9
2	Public data from three US states provide new insights into well integrity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	28
3	Vulnerability of Groundwater Resources Underlying Unlined Produced Water Ponds in the Tulare Basin of the San Joaquin Valley, California. Environmental Science & Echnology, 2021, 55, 14782-14794.	4.6	9
4	Microbial and Biogeochemical Indicators of Methane in Groundwater Aquifers of the Denver Basin, Colorado. Environmental Science & Environmental Scienc	4.6	7
5	Degradation of polyethylene glycols and polypropylene glycols in microcosms simulating a spill of produced water in shallow groundwater. Environmental Sciences: Processes and Impacts, 2019, 21, 256-268.	1.7	27
6	Geochemical Factors Controlling Dissolved Elemental Mercury and Methylmercury Formation in Alaskan Wetlands of Varying Trophic Status. Environmental Science & Environmental Science & 2019, 53, 6203-6213.	4.6	30
7	Water Stress from High-Volume Hydraulic Fracturing Potentially Threatens Aquatic Biodiversity and Ecosystem Services in Arkansas, United States. Environmental Science & Ecosystem Services in Arkansas, United States. Environmental Science & Enviro	4.6	27
8	Identification of polypropylene glycols and polyethylene glycol carboxylates in flowback and produced water from hydraulic fracturing. Journal of Hazardous Materials, 2017, 323, 11-17.	6.5	68
9	Unconventional oil and gas spills: Materials, volumes, and risks to surface waters in four states of the U.S Science of the Total Environment, 2017, 581-582, 369-377.	3.9	92
10	Spatial Dependence of Reduced Sulfur in Everglades Dissolved Organic Matter Controlled by Sulfate Enrichment. Environmental Science & Enrichment. Environmental Environment. Environmental Environmental Environment. Environmental Environment. E	4.6	78
11	Surface Casing Pressure As an Indicator of Well Integrity Loss and Stray Gas Migration in the Wattenberg Field, Colorado. Environmental Science & Envi	4.6	47
12	Temporal characterization of flowback and produced water quality from a hydraulically fractured oil and gas well. Science of the Total Environment, 2017, 596-597, 369-377.	3.9	115
13	Effects of Sulfide Concentration and Dissolved Organic Matter Characteristics on the Structure of Nanocolloidal Metacinnabar. Environmental Science & Environmental Science & 2017, 51, 13133-13142.	4.6	50
14	Inhibition of Biodegradation of Hydraulic Fracturing Compounds by Glutaraldehyde: Groundwater Column and Microcosm Experiments. Environmental Science & Experiments.	4.6	25
15	Characterization of Accidental Spills and Releases Affecting Groundwater in the Greater Wattenberg Area of the Denver-Julesburg Basin in Northeastern Colorado. , 2017, , .		O
16	Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding. Geochimica Et Cosmochimica Acta, 2016, 176, 118-138.	1.6	50
17	Water acquisition and use during unconventional oil and gas development and the existing data challenges: Weld and Garfield counties, CO. Journal of Environmental Management, 2016, 181, 36-47.	3.8	15
18	Groundwater methane in relation to oil and gas development and shallow coal seams in the Denver-Julesburg Basin of Colorado. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8391-8396.	3.3	75

#	Article	IF	Citations
19	Estimating mercury emissions resulting from wildfire in forests of the Western United States. Science of the Total Environment, 2016, 568, 578-586.	3.9	44
20	Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix. Environmental Science & Eamp; Technology, 2016, 50, 2310-2317.	4.6	36
21	Mobilization of Microspheres from a Fractured Soil during Intermittent Infiltration Events. Vadose Zone Journal, 2015, 14, vzj2014.05.0058.	1.3	25
22	A Framework for Identifying Organic Compounds of Concern in Hydraulic Fracturing Fluids Based on Their Mobility and Persistence in Groundwater. Environmental Science and Technology Letters, 2015, 2, 158-164.	3.9	75
23	Colloid Mobilization in a Fractured Soil during Dry–Wet Cycles: Role of Drying Duration and Flow Path Permeability. Environmental Science & Technology, 2015, 49, 9100-9106.	4.6	64
24	Formation of Mercury Sulfide from Hg(II)–Thiolate Complexes in Natural Organic Matter. Environmental Science & Environmenta	4.6	111
25	Colloid-Facilitated Mobilization of Metals by Freeze–Thaw Cycles. Environmental Science & Technology, 2014, 48, 977-984.	4.6	75
26	Effects of Iron on Optical Properties of Dissolved Organic Matter. Environmental Science & Emp; Technology, 2014, 48, 10098-10106.	4.6	231
27	Effects of chlorine and other water quality parameters on the release of silver nanoparticles from a ceramic surface. Water Research, 2013, 47, 4032-4039.	5.3	17
28	Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model. Water Resources Research, 2013, 49, 2952-2965.	1.7	23
29	In-Stream Attenuation of Neuro-Active Pharmaceuticals and Their Metabolites. Environmental Science & E	4.6	80
30	Comparison of electrical conductivity calculation methods for natural waters. Limnology and Oceanography: Methods, 2012, 10, 952-967.	1.0	53
31	Fate of 4-Nonylphenol and $17\hat{l}^2$ -Estradiol in the Redwood River of Minnesota. Environmental Science & Environmental Scien	4.6	100
32	Effect of Dissolved Organic Carbon on the Transport and Attachment Behaviors of <i>Cryptosporidium parvum</i> oocysts and Carboxylate-Modified Microspheres Advected through Temperate Humic and Tropical Volcanic Agricultural soil. Environmental Science & Echnology, 2012, 46, 2088-2094.	4.6	12
33	Copper(II) Binding by Dissolved Organic Matter: Importance of the Copper-to-Dissolved Organic Matter Ratio and Implications for the Biotic Ligand Model. Environmental Science & Environmental Science	4.6	66
34	A new method of calculating electrical conductivity with applications to natural waters. Geochimica Et Cosmochimica Acta, 2012, 77, 369-382.	1.6	80
35	Role of Biofilms in Sorptive Removal of Steroidal Hormones and 4-Nonylphenol Compounds from Streams. Environmental Science & E	4.6	81
36	Biodegradation and Attenuation of Steroidal Hormones and Alkylphenols by Stream Biofilms and Sediments. Environmental Science & Environmental Science	4.6	81

#	Article	IF	CITATIONS
37	Metallothionein-Like Multinuclear Clusters of Mercury(II) and Sulfur in Peat. Environmental Science &	4.6	59
38	Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids. Environmental Science & Environmental Science	4.6	678
39	Effects of Humic Substances on Precipitation and Aggregation of Zinc Sulfide Nanoparticles. Environmental Science & Environmen	4.6	131
40	Formation of Nanocolloidal Metacinnabar in Mercury-DOM-Sulfide Systems. Environmental Science & Environmental	4.6	110
41	Methods for evaluating in-stream attenuation of trace organic compounds. Applied Geochemistry, 2011, 26, S344-S345.	1.4	18
42	Comparison of transport and attachment behaviors of Cryptosporidium parvum oocysts and oocyst-sized microspheres being advected through three minerologically different granular porous media. Water Research, 2010, 44, 5334-5344.	5.3	25
43	Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 3. Use of microspheres to estimate the transport potential of <i>Cryptosporidium parvum</i> oocysts. Water Resources Research, 2008, 44, .	1.7	36
44	A critical review of three methods used for the measurement of mercury (Hg2+)-dissolved organic matter stability constants. Applied Geochemistry, 2007, 22, 1583-1597.	1.4	56
45	Pore-scale mechanisms of colloid deposition and mobilization during steady and transient flow through unsaturated granular media. Water Resources Research, 2006, 42, .	1.7	70
46	Effect of desorption kinetics on colloid-facilitated transport of contaminants: Cesium, strontium, and illite colloids. Water Resources Research, 2006, 42, .	1.7	26
47	Introduction to special section on Colloid Transport in Subsurface Environments. Water Resources Research, 2006, 42, .	1.7	19
48	Dissolution of cinnabar (HgS) in the presence of natural organic matter. Geochimica Et Cosmochimica Acta, 2005, 69, 1575-1588.	1.6	145
49	Colloid Movement in Unsaturated Porous Media: Recent Advances and Future Directions. Vadose Zone Journal, 2004, 3, 338-351.	1.3	180
50	Use of PRD1 bacteriophage in groundwater viral transport, inactivation, and attachment studies. FEMS Microbiology Ecology, 2004, 49, 3-16.	1.3	75
51	Conservative and reactive solute transport in constructed wetlands. Water Resources Research, 2004, 40, .	1.7	87
52	Deposition and mobilization of clay colloids in unsaturated porous media. Water Resources Research, 2004, 40, .	1.7	75
53	Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands. Environmental Science & Environmental Science	4.6	56
54	Transport of Cryptosporidium Oocysts in Porous Media: Role of Straining and Physicochemical Filtration â€. Environmental Science & Environmental Sc	4.6	219

#	Article	IF	CITATIONS
55	Colloid Movement in Unsaturated Porous Media: Recent Advances and Future Directions. Vadose Zone Journal, 2004, 3, 338-351.	1.3	51
56	Colloid transport in a geochemically heterogeneous porous medium: aquifer tank experiment and modeling. Journal of Contaminant Hydrology, 2003, 65, 161-182.	1.6	46
57	Binding of Mercury(II) to Aquatic Humic Substances:Â Influence of pH and Source of Humic Substances. Environmental Science & Emp; Technology, 2003, 37, 2436-2441.	4.6	207
58	Mercury(II) Sorption to Two Florida Everglades Peats:Â Evidence for Strong and Weak Binding and Competition by Dissolved Organic Matter Released from the Peat. Environmental Science & Emp; Technology, 2002, 36, 4058-4064.	4.6	134
59	Mobilization of Natural Colloids from an Iron Oxide-Coated Sand Aquifer:Â Effect of pH and Ionic Strength. Environmental Science & Environmental Scien	4.6	65
60	Peer Reviewed: The Promise of Bank Filtration. Environmental Science & Environ	4.6	224
61	Field and Laboratory Investigations of Inactivation of Viruses (PRD1 and MS2) Attached to Iron Oxide-Coated Quartz Sand. Environmental Science & Envir	4.6	141
62	Binding of Mercury(II) to Dissolved Organic Matter:Â The Role of the Mercury-to-DOM Concentration Ratio. Environmental Science & Environmental Science	4.6	336
63	Virus transport in physically and geochemically heterogeneous subsurface porous media. Journal of Contaminant Hydrology, 2002, 57, 161-187.	1.6	89
64	Particle Release and Permeability Reduction in a Natural Zeolite (Clinoptilolite) and Sand Porous Medium. Environmental Science & Echnology, 2001, 35, 4502-4508.	4.6	33
65	Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media. Water Resources Research, 2001, 37, 209-222.	1.7	44
66	Effect of basin physical characteristics on solute fluxes in nine alpine/subalpine basins, Colorado, USA. Hydrological Processes, 2001, 15, 2749-2769.	1.1	30
67	A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media. Journal of Contaminant Hydrology, 2001, 49, 173-199.	1.6	52
68	Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain National Park, Colorado. Water Resources Research, 2000, 36, 63-75.	1.7	98
69	Membranes for the control of natural organic matter from surface waters. Water Research, 2000, 34, 3355-3370.	5.3	98
70	Silica-Coated Titania and Zirconia Colloids for Subsurface Transport Field Experiments. Environmental Science & Environmental	4.6	49
71	Relative Insignificance of Mineral Grain Zeta Potential to Colloid Transport in Geochemically Heterogeneous Porous Media. Environmental Science & Envi	4.6	245
72	Inhibition of Precipitation and Aggregation of Metacinnabar (Mercuric Sulfide) by Dissolved Organic Matter Isolated from the Florida Everglades. Environmental Science & Environmental Science & 1418-1423.	4.6	166

#	Article	IF	CITATIONS
73	Bacteriophage PRD1 and Silica Colloid Transport and Recovery in an Iron Oxide-Coated Sand Aquifer. Environmental Science & Env	4.6	199
74	Enhanced Dissolution of Cinnabar (Mercuric Sulfide) by Dissolved Organic Matter Isolated from the Florida Everglades. Environmental Science & Environmental Science & 23, 3305-3311.	4.6	192
75	Transport and Recovery of Bacteriophage PRD1 in a Sand and Gravel Aquifer:Â Effect of Sewage-Derived Organic Matter. Environmental Science & Environme	4.6	163
76	Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 107, 1-56.	2.3	990
77	Role of organic acidity in sorption of natural organic matter (NOM) to oxide surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 107, 297-307.	2.3	93
78	Effects of Ionic Strength and Flow Rate on Colloid Release: Relating Kinetics to Intersurface Potential Energy. Journal of Colloid and Interface Science, 1994, 164, 21-34.	5.0	196
79	Effect of Solution Chemistry on Clay Colloid Release from an Iron Oxide-Coated Aquifer Sand. Environmental Science & Technology, 1994, 28, 1717-1726.	4.6	129
80	Sampling Colloids and Colloid-Associated Contaminants in Ground Water. Ground Water, 1993, 31, 466-479.	0.7	105
81	Effect of iron diagenesis on the transport of colloidal clay in an unconfined sand aquifer. Geochimica Et Cosmochimica Acta, 1992, 56, 1507-1521.	1.6	54
82	Extraction of Iron Oxides from Sediments Using Reductive Dissolution by Titanium(III). Clays and Clay Minerals, 1991, 39, 509-518.	0.6	43
83	Colloid mobilization in two Atlantic coastal plain aquifers: Field studies. Water Resources Research, 1990, 26, 307-322.	1.7	120
84	Metal and nutrient behavior in the Raritan estuary, New Jersey, U.S.A.: The effect of multiple freshwater and industrial waste inputs. Chemical Geology, 1990, 81, 133-149.	1.4	5