List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2541882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Applied Clay Science, 2019, 168, 11-20.	5.2	186
2	Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling. Progress in Biophysics and Molecular Biology, 2019, 141, 60-71.	2.9	130
3	Application of spouted bed elutriation in the recycling of lithium ion batteries. Journal of Power Sources, 2015, 275, 627-632.	7.8	96
4	Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environmental Pollution, 2022, 293, 118581.	7.5	94
5	Layered double hydroxides/biochar composites as adsorbents for water remediation applications: recent trends and perspectives. Journal of Cleaner Production, 2021, 284, 124755.	9.3	68
6	Adsorption of anti-inflammatory drug diclofenac by MgAl/layered double hydroxide supported on Syagrus coronata biochar. Powder Technology, 2020, 364, 229-240.	4.2	66
7	Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. Journal of Hazardous Materials, 2021, 407, 124842.	12.4	64
8	Evaluation of caffeine adsorption by MgAl-LDH/biochar composite. Environmental Science and Pollution Research, 2019, 26, 31804-31811.	5.3	61
9	Wodyetia bifurcata biochar for methylene blue removal from aqueous matrix. Bioresource Technology, 2019, 293, 122093.	9.6	61
10	Adsorption of a non-steroidal anti-inflammatory drug onto MgAl/LDH-activated carbon composite – Experimental investigation and statistical physics modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124217.	4.7	51
11	Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents. Environmental Science and Pollution Research, 2019, 26, 19207-19219.	5.3	50
12	Removal of Tannery Dye from Aqueous Solution Using Papaya Seed as an Efficient Natural Biosorbent. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	46
13	Convective drying of papaya seeds (Carica papaya L.) and optimization of oil extraction. Industrial Crops and Products, 2016, 85, 221-228.	5.2	46
14	Use of papaya seeds as a biosorbent of methylene blue from aqueous solution. Water Science and Technology, 2013, 68, 441-447.	2.5	40
15	Electrochemical degradation and toxicity evaluation of reactive dyes mixture and real textile effluent over DSA® electrodes. Chemical Engineering and Processing: Process Intensification, 2020, 153, 107940.	3.6	38
16	RSM-CCD optimization approach for the adsorptive removal of Eriochrome Black T from aqueous system using steel slag-based adsorbent: Characterization, Isotherm, Kinetic modeling and thermodynamic analysis. Journal of Molecular Liquids, 2021, 339, 116714.	4.9	37
17	Spouted bed drying of papaya seeds for oil production. LWT - Food Science and Technology, 2016, 65, 852-860.	5.2	35
18	Saturated activated carbon regeneration by UV-light, H2O2 and Fenton reaction. Separation and Purification Technology, 2020, 250, 117112.	7.9	35

#	Article	IF	CITATIONS
19	Caffeine removal using Elaeis guineensis activated carbon: adsorption and RSM studies. Environmental Science and Pollution Research, 2020, 27, 27048-27060.	5.3	34
20	Mg-Fe layered double hydroxide with chloride intercalated: synthesis, characterization and application for efficient nitrate removal. Environmental Science and Pollution Research, 2020, 27, 5890-5900.	5.3	33
21	Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH-modified steel dust: Kinetic and process modeling. Separation and Purification Technology, 2022, 287, 120559.	7.9	33
22	Adsorptive potential of Zn–Al and Mg–Fe layered double hydroxides for the removal of 2–nitrophenol from aqueous solutions. Journal of Environmental Chemical Engineering, 2020, 8, 103913.	6.7	32
23	Syagrus oleracea–activated carbon prepared by vacuum pyrolysis for methylene blue adsorption. Environmental Science and Pollution Research, 2019, 26, 16470-16481.	5.3	31
24	Calcined Mytella falcata shells as alternative adsorbent for efficient removal of rifampicin antibiotic from aqueous solutions. Journal of Environmental Chemical Engineering, 2020, 8, 103782.	6.7	28
25	Efficient adsorption of dyes by γ-alumina synthesized from aluminum wastes: Kinetics, isotherms, thermodynamics and toxicity assessment. Journal of Environmental Chemical Engineering, 2021, 9, 106198.	6.7	28
26	Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies. Water Science and Technology, 2013, 67, 201-209.	2.5	27
27	Ouricuri (Syagrus coronata) fiber: a novel biosorbent to remove methylene blue from aqueous solutions. Water Science and Technology, 2017, 75, 106-114.	2.5	27
28	Different routes for MgFe/LDH synthesis and application to remove pollutants of emerging concern. Separation and Purification Technology, 2021, 264, 118353.	7.9	27
29	Catalytic deoxygenation of palm oil and its residue in green diesel production: A current technological review. Chemical Engineering Research and Design, 2021, 174, 158-187.	5.6	27
30	Effect of Drying on the Fabrication of MgAl Layered Double Hydroxides. ACS Omega, 2021, 6, 21819-21829.	3.5	26
31	Ultrafast diesel oil spill removal by fibers from silk-cotton tree: Characterization and sorption potential evaluation. Journal of Cleaner Production, 2020, 263, 121448.	9.3	25
32	Biodiesel production from Sterculia striata oil by ethyl transesterification method. Industrial Crops and Products, 2015, 74, 767-772.	5.2	24
33	Kinetics, isotherm, and thermodynamic studies of methylene blue adsorption from water by Mytella falcata waste. Environmental Science and Pollution Research, 2017, 24, 19927-19937.	5.3	24
34	Fluid Dynamics of Fluidized and Vibrofluidized Beds Operating with Geldart C Particles. Chemical Engineering and Technology, 2012, 35, 1649-1656.	1.5	23
35	Comparison between Brazilian agro-wastes and activated carbon as adsorbents to remove Ni(II) from aqueous solutions. Water Science and Technology, 2016, 73, 2713-2721.	2.5	22
36	Cassava (<i>Manihot esculenta</i> Crantz) stump biochar: Physical/chemical characteristics and dye affinity. Chemical Engineering Communications, 2019, 206, 829-841.	2.6	22

#	Article	IF	CITATIONS
37	Regeneration of activated carbon adsorbent by anodic and cathodic electrochemical process. Chemical Engineering Research and Design, 2022, 159, 1150-1163.	5.6	22
38	Electrochemical degradation of 17-α-Methyltestosterone over DSA® electrodes. Chemical Engineering and Processing: Process Intensification, 2019, 142, 107548.	3.6	21
39	Stirring and mixing in ethylic biodiesel production. Journal of King Saud University - Science, 2020, 32, 54-59.	3.5	21
40	COVID-19 pandemic in Uttarakhand, India: Environmental recovery or degradation?. Journal of Environmental Chemical Engineering, 2021, 9, 106595.	6.7	21
41	Lanthanum hydroxide engineered sewage sludge biochar for efficient phosphate elimination: Mechanism interpretation using physical modelling. Science of the Total Environment, 2022, 803, 149888.	8.0	20
42	Waste of Mytella Falcata shells for removal of a triarylmethane biocide from water: Kinetic, equilibrium, regeneration and thermodynamic studies. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111230.	5.0	19
43	Removal of Reactive Dyes from Aqueous Solution by Fenton Reaction: Kinetic Study and Phytotoxicity Tests. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	18
44	Analysis of the Influence of Dimensionless Vibration Number on the Drying of Pastes in Vibrofluidized Beds. Drying Technology, 2010, 28, 402-411.	3.1	16
45	Comparing Electrochemical and Fenton-Based Processes for Aquaculture Biocide Degradation. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	16
46	Fenton-based processes for the regeneration of biochar from Syagrus coronata biomass used as dye adsorbent. , 0, 162, 391-398.		16
47	Mixed metal oxides derived from layered double hydroxide as catalysts for biodiesel production. Applied Catalysis A: General, 2022, 630, 118470.	4.3	15
48	Electrochemical process and Fenton reaction followed by lamellar settler to oil/surfactant effluent degradation. Journal of Water Process Engineering, 2019, 31, 100841.	5.6	14
49	Artificial neural networks to model kinetics and energy efficiency in fixed, fluidized and vibro-fluidized bed dryers towards process optimization. Chemical Engineering and Processing: Process Intensification, 2020, 156, 108089.	3.6	14
50	Production of magnetic biochar-steel dust composites for enhanced phosphate adsorption. Journal of Water Process Engineering, 2022, 47, 102793.	5.6	14
51	Analyzing the universality of the dimensionless vibrating number based on the effective moisture diffusivity and its impact on specific energy consumption. Heat and Mass Transfer, 2020, 56, 1659-1672.	2.1	12
52	Volcanic ashe and its NaOH modified adsorbent for superb cationic dye uptake from water: Statistical evaluation, optimization, and mechanistic studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127879.	4.7	12
53	Mollusk shells as adsorbent for removal of endocrine disruptor in different water matrix. Journal of Environmental Chemical Engineering, 2021, 9, 105704.	6.7	11
54	OIL PRODUCED WATER TREATMENT USING SUGARCANE SOLID RESIDUE AS BIOSORBENT. Revista Mexicana De Ingeniera Quimica, 2019, 19, 27-38.	0.4	10

#	Article	IF	CITATIONS
55	Calcined Mytella falcata shells as a source for CaAl/LDH production: Synthesis and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128752.	4.7	10
56	Mathematical Modeling of Thin Layer Drying of Papaya Seeds in a Tunnel Dryer Using Particle Swarm Optimization Method. Particulate Science and Technology, 2014, 32, 123-130.	2.1	9
57	Impact of temperature on vacuum pyrolysis of Syagrus coronata for biochar production. Journal of Material Cycles and Waste Management, 2020, 22, 878-886.	3.0	9
58	Immobilization of inulinase obtained by solid-state fermentation using spray-drying technology. Biocatalysis and Biotransformation, 2012, 30, 409-416.	2.0	8
59	Comparative adsorption of Eriochrome black T onto recyclable steel dust wastes: Isotherm, kinetics and thermodynamic studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128828.	4.7	8
60	Fluid Dynamics of Vibrofluidized Beds during the Transient Period of Water Evaporation and Drying of Solutions. Chemical Engineering and Technology, 2012, 35, 1803-1809.	1.5	7
61	Evaluation of the mass transfer process on thin layer drying of papaya seeds from the perspective of diffusive models. Heat and Mass Transfer, 2018, 54, 463-471.	2.1	7
62	Effluent treatment using activated carbon adsorbents: a bibliometric analysis of recent literature. Environmental Science and Pollution Research, 2021, 28, 32224-32235.	5.3	7
63	Carbon-covered mesoporous silica and its application in Rhodamine B adsorption. Environmental Technology (United Kingdom), 2018, 39, 1123-1132.	2.2	6
64	Liquid–Liquid Equilibrium of the System {Peanut Biodiesel + Glycerol + Ethanol} at Atmospheric Pressure. Journal of Chemical & Engineering Data, 2019, 64, 2207-2212.	1.9	6
65	ESTUDO DA SECAGEM E EXTRAÇÃO DE SEMENTES DE MAMÃO (CARICA PAPAYA L.). Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 2012, 5, .	0.0	6
66	Perspectives of the reuse of agricultural wastes from the Rio Grande do Sul, Brazil, as new adsorbent materials. , 2022, , 243-266.		5
67	A facile synthesis of MgAl/layered double hydroxides from aluminum wastes. Materials Letters, 2022, 324, 132624.	2.6	5
68	Pyrolysis of Coconut Inflorescence Wastes: Production, Effects of Parameters, Characterization and Optimization of Phenolic-Rich Bio-Oil. International Journal of Environmental Research, 2022, 16, 1.	2.3	4
69	Highly effective adsorption of caffeine by a novel activated carbon prepared from coconut leaf. Environmental Science and Pollution Research, 2022, 29, 50661-50674.	5.3	4
70	Comparative study of diesel sorption performance between Chorisia speciosa fibers and a commercial polyurethane foam. Revista Materia, 2021, 26, .	0.2	2
71	Characteristics of SARS-CoV-2 aerosol dispersion in indoor air: scoping review. Research, Society and Development, 2021, 10, e44310414300.	0.1	2
72	CARACTERIZAÇÃO E PROCESSAMENTO DE TELAS DE LCD DE CELULARES VISANDO A RECICLAGEM. Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 2013, 8, .	0.0	2

#	Article	IF	CITATIONS
73	UTILIZAÇÃO DA FIBRA DO OURICURI (SYAGRUS CORONATA) NA REMOÇÃO DO CORANTE AZUL DE METILEN VARIÃVEIS DE PROCESSO E ISOTERMA DE ADSORÇÃO. , 0, , .	10:	2
74	Fundamentals of Adsorption in Liquid Phase. Environmental Chemistry for A Sustainable World, 2021, , 1-24.	0.5	1
75	Hydrometallurgical Processing. Topics in Mining, Metallurgy and Materials Engineering, 2015, , 61-71.	1.6	1
76	EMPIRICAL EVALUATION OF STIRRING PROCEDURES IN THE PRODUCTION OF BIODIESEL FROM CASTOR OIL. Brazilian Journal of Petroleum and Gas, 2016, 10, 77-87.	0.2	1
77	Avaliação do efeito de agitação e mistura na produção de biodiesel de soja. , 0, , .		1
78	INFLUÊNCIA DA TEMPERATURA NOS RENDIMENTOS DOS PRODUTOS DA PIRÓLISE DO ENDOCARPO DO OURICURI (SYAGRUS CORONATA (MART) BECC.). , 0, , .		1
79	Effects of Operational Variables on the Performance of Venturi Scrubbers with Circular Section. Materials Science Forum, 2006, 530-531, 298-303.	0.3	0
80	RECUPERAÇÃO DE COBALTO DE BATERIAS ÃON-LÃŢIO ATRAVÉS DE LIXIVIAÇÃO ÃCIDA E ELETRO-OBTENÂ Revista Eletrônica Em Gestão Educação E Tecnologia Ambiental, 2012, 5, .	∖‡ÃfO. 0.0	0
81	ESTUDO NUMÉRICO DA VISCOSIDADE DO FLUXO BIFÃSICO ÓLEO E GÃS NATURAL EM POÇOS DE PETRÓLE 0, , .	Ю.,	0
82	ESTUDO DA CINÉTICA DE ADSORÇÃO DE EFLUENTE DE PRODUÇÃO DE BIODIESEL EM CARVÃO ATIVADO OSSO BOVINO. , 0, , .) de	0
83	Electrometallurgical Processing. Topics in Mining, Metallurgy and Materials Engineering, 2015, , 73-79.	1.6	0
84	CONSTRUÇÃO DE CURVAS DE TEMPERATURAS PARA A VISCOSIDADE E DENSIDADE DAS BLENDAS FORMADAS COM DIESEL MINERAL E BIODIESEL DE COCO, DENDE E OURICURI. , 0, , .	3	0
85	ANÃLISE DA FLUIDODINÃ,MICA DE SEMENTES DE MAMÃ $_f$ O EM UM SECADOR DE LEITO DE JORRO. , 0, , .		0
86	ESTUDO NUMÉRICO DA INFLUÊNCIA DA VISCOSIDADE DO FLUXO BIFÃ S ICO NÃO-ISOTÉRMICO DE ÓLE PESADO E GÃ S NATURAL EM UM DUTO VERTICAL. , 0, , .	0	0
87	TRATAMENTO DE SOLUÇÃO AQUOSA CONTAMINADA COM ÃONS FLUORETO VIA ADSORÇÃO. , 0, , .		0
88	ESTUDO DO TRATAMENTO DE ÃGUA CONTAMINADA COM PIGMENTO UTILIZANDO RESÃDUO DE GRAVIOLA COMO AGENTE ADSORVENTE. , 0, , .		0
89	ESTUDO DO PROCESSO DE PURIFICAÇÃO DE EFLUENTES OLEOSOS DA INDÊSTRIA DE PETRÓLEO. , 0, , .		0
90	ESTUDO DA INFLUÊNCIA DA TEMPERATURA DE PIRÓLISE NO BIOCARVÃO OBTIDO A PARTIR DO MESOCARPO DO COCO (COCOS NUCIFERA L.). , 0, , .)	0

6

#	Article	IF	CITATIONS
91	CARACTERIZAÇÃO DO BIOCARVÃO OBTIDO A PARTIR DA PIRÓLISE DO ENDOCARPO DO COCO (COCOS) Tj	ETQq1 1	0.784314 rg
92	SÃNTESE DE COMPÓSITOS HDL-BIOCARVÃO DE OURICURI PARA APLICAÇÃO NA REMOÇÃO DE POLUENT EMERGENTES. , 0, , .	ES	0
93	Layered double hydroxides for controlled fluoride release. Brazilian Oral Research, 2021, 35, e104.	1.4	0
94	Comments on "Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions―[J. Hazard. Mater. 423 (2022) 126915]. Journal of Hazardous Materials, 2022, 429, 128307.	12.4	0
95	Analysis of patents in photocatalytic water and wastewater treatment. Part II $\hat{a} \in $ solar energy and nanotechnology. , 2022, , 183-208.		0