Hirohiko Fukagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/254184/publications.pdf

Version: 2024-02-01

62 papers 1,660 citations

331670 21 h-index 289244 40 g-index

63 all docs

63 docs citations

63 times ranked

2095 citing authors

#	Article	IF	CITATIONS
1	Highly Efficient and Stable Red Phosphorescent Organic Lightâ€Emitting Diodes Using Platinum Complexes. Advanced Materials, 2012, 24, 5099-5103.	21.0	160
2	Low-density band-gap states in pentacene thin films probed with ultrahigh-sensitivity ultraviolet photoelectron spectroscopy. Applied Physics Letters, 2009, 95, .	3.3	128
3	The Role of the Ionization Potential in Vacuum-Level Alignment at Organic Semiconductor Interfaces. Advanced Materials, 2007, 19, 665-668.	21.0	127
4	Anthracene derivatives as efficient emitting hosts for blue organic light-emitting diodes utilizing triplet–triplet annihilation. Organic Electronics, 2012, 13, 1197-1203.	2.6	112
5	Longâ€Lived Flexible Displays Employing Efficient and Stable Inverted Organic Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1706768.	21.0	93
6	Pyridoindole Derivative as Electron Transporting Host Material for Efficient Deepâ€blue Phosphorescent Organic Lightâ€emitting Diodes. Advanced Materials, 2010, 22, 4775-4778.	21.0	76
7	Charge Reorganization Energy and Small Polaron Binding Energy of Rubrene Thin Films by Ultraviolet Photoelectron Spectroscopy. Advanced Materials, 2012, 24, 901-905.	21.0	65
8	Highly efficient and air-stable inverted organic light-emitting diode composed of inert materials. Applied Physics Express, 2014, 7, 082104.	2.4	64
9	Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter. Scientific Reports, 2015, 5, 9855.	3.3	62
10	High-efficiency ultrapure green organic light-emitting diodes. Materials Chemistry Frontiers, 2018, 2, 704-709.	5.9	60
11	Operational lifetimes of organic light-emitting diodes dominated by Förster resonance energy transfer. Scientific Reports, 2017, 7, 1735.	3.3	59
12	Experimental Reorganization Energies of Pentacene and Perfluoropentacene: Effects of Perfluorination. Journal of Physical Chemistry C, 2013, 117, 22428-22437.	3.1	53
13	Spectroscopic evidence of strongÏ€â~Ï€interorbital interaction in a lead-phthalocyanine bilayer film attributed to the dimer nanostructure. Physical Review B, 2007, 75, .	3.2	49
14	Flexible Active-Matrix Organic Light-Emitting Diode Display Using Air-Stable Organic Semiconductor of $\frac{Dinaphtho}{hbox{2}, hbox{3}hbox{-b}: hbox{2}^{ prime}, hbox{3}^{prime}} hbox{thieno}{hbox{3}, hbox{2} hbox{-b}] hbox{-hbox{thieno}{hbox{5}, 1EEE Transactions on Electron Devices, 2012, 59, 3442-3449.}$	3.0	47
15	Novel Hole-Transporting Materials with High Triplet Energy for Highly Efficient and Stable Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2016, 120, 18748-18755.	3.1	46
16	Highly Efficient and Stable Phosphorescent Organic Lightâ€Emitting Diodes Utilizing Reverse Intersystem Crossing of the Host Material. Advanced Optical Materials, 2014, 2, 1070-1075.	7.3	36
17	Fabrication of 5.8â€in. OTFTâ€driven flexible color AMOLED display using dual protection scheme for organic semiconductor patterning. Journal of the Society for Information Display, 2009, 17, 629-634.	2.1	35
18	Efficient white organic light emitting diodes with solution processed and vacuum deposited emitting layers. Organic Electronics, 2009, 10, 798-802.	2.6	30

#	Article	IF	CITATIONS
19	A 5.8â€in. phosphorescent color AMOLED display fabricated by inkâ€jet printing on plastic substrate. Journal of the Society for Information Display, 2009, 17, 1037-1042.	2.1	30
20	Unravelling the electron injection/transport mechanism in organic light-emitting diodes. Nature Communications, 2021, 12, 2706.	12.8	30
21	Observation of a temperature-dependent transition of a copper-phthalocyanine thin film adsorbed on HOPG. Chemical Physics Letters, 2008, 451, 43-47.	2.6	24
22	Understanding coordination reaction for producing stable electrode with various low work functions. Nature Communications, 2020, 11, 3700.	12.8	23
23	Development of 8â€in. oxideâ€TFTâ€driven flexible AMOLED display using highâ€performance red phosphorescent OLED. Journal of the Society for Information Display, 2014, 22, 137-143.	2.1	20
24	Development of flexible displays using back-channel-etched In-Sn-Zn-O thin-film transistors and air-stable inverted organic light-emitting diodes. Journal of the Society for Information Display, 2016, 24, 3-11.	2.1	20
25	Universal Strategy for Efficient Electron Injection into Organic Semiconductors Utilizing Hydrogen Bonds. Advanced Materials, 2019, 31, 1904201.	21.0	20
26	20.4: An 8â€in. Oxideâ€TFTâ€Driven Flexible AMOLED Display with Solutionâ€Processed Insulators. Digest of Technical Papers SID International Symposium, 2012, 43, 271-274.	0.3	18
27	16.4: Lowâ€Temperature Fabrication of Flexible AMOLED Displays Using Oxide TFTs with Polymer Gate Insulators. Digest of Technical Papers SID International Symposium, 2011, 42, 202-205.	0.3	17
28	Simply structured, deep-blue phosphorescent organic light-emitting diode with bipolar host material. Organic Electronics, 2011, 12, 1638-1643.	2.6	17
29	Molecular design of hole-transporting material for efficient and stable green phosphorescent organic light-emitting diodes. Applied Physics Letters, 2013, 103, .	3.3	15
30	UPS study of VUV-photodegradation of polytetrafluoroethylene (PTFE) ultrathin film by using synchrotron radiation. Nuclear Instruments & Methods in Physics Research B, 2005, 236, 377-382.	1.4	12
31	Lowâ€temperature fabrication of 5â€in. QVGA flexible AMOLED display driven by OTFTs using olefin polymer as the gate insulator. Journal of the Society for Information Display, 2011, 19, 861-866.	2.1	11
32	Pâ€154: Fabrication of 8â€Inch VGA Flexible Display Using Airâ€Stable Inverted OLED. Digest of Technical Papers SID International Symposium, 2014, 45, 1561-1564.	0.3	11
33	P.140L: <i>Lateâ€News Poster</i> : Highly Efficient Inverted OLED with Airâ€Stable Electron Injection Layer. Digest of Technical Papers SID International Symposium, 2013, 44, 1466-1469.	0.3	10
34	Direct Observation of Efficient Triplet–Triplet Energy Transfer in Phosphorescent Organic Light-Emitting Diode. Applied Physics Express, 2013, 6, 052104.	2.4	9
35	High-current operation of vertical-type organic transistor with preferentially oriented molecular film. AIP Advances, 2016, 6, .	1.3	9
36	Improvement in image quality of a 5.8â€in. OTFTâ€driven flexible AMOLED display. Journal of the Society for Information Display, 2011, 19, 94-99.	2.1	7

#	Article	IF	CITATIONS
37	Effect of Host Moieties on the Phosphorescent Spectrum of Green Platinum Complex. Molecules, 2019, 24, 454.	3.8	7
38	Longâ€Lived Efficient Inverted Organic Lightâ€Emitting Diodes Developed by Controlling Carrier Injection Barrier into Emitting Layer. Advanced Optical Materials, 2020, 8, 2000506.	7.3	6
39	46.4: Effects of Electron Injection Layer on Storage and Operational Stability of Airâ€Stable OLEDs. Digest of Technical Papers SID International Symposium, 2015, 46, 696-699.	0.3	5
40	65.3: Development of Flexible Displays using Backâ€Channelâ€Etched In–Sn–Zn–O TFTs and Airâ€Stable Inverted OLEDs. Digest of Technical Papers SID International Symposium, 2015, 46, 969-972.	0.3	5
41	58-3: <i>Invited Paper</i> : Demonstration of Highly Efficient and Air-Stable OLED Utilizing Novel Heavy-Doping Technique. Digest of Technical Papers SID International Symposium, 2016, 47, 790-793.	0.3	5
42	Airâ€Stable Ultraâ€Flexible Organic Photonic System for Cardiovascular Monitoring. Advanced Materials Technologies, 2022, 7, .	5.8	5
43	47-2: <i>Invited Paper</i> : Oxide/Organic Semiconductor Electronics on Plastic Substrates for Flexible AMOLED Displays. Digest of Technical Papers SID International Symposium, 2016, 47, 633-636.	0.3	4
44	6 inch-flexible AM-OLED moving image display. , 2009, , .		3
45	Characteristics of OTFTs Using Olefin-polymer Gate Insulator and Their Application to a 5-in. OTFT-driven Flexible AMOLED Display. Materials Research Society Symposia Proceedings, 2011, 1287, 1.	0.1	3
46	61â€3: Demonstration of Longâ€Term Stable Emission from Inverted OLED with Imperfect Encapsulation. Digest of Technical Papers SID International Symposium, 2018, 49, 811-814.	0.3	3
47	Comprehensive study on operational lifetime of organic light-emitting diodes: effects of molecular structure and energy transfer. Japanese Journal of Applied Physics, 2021, 60, 040902.	1.5	2
48	Role of intrinsic band-gap states for the energy level alignment at weakly interacting organic-conductor interfaces: gap states versus band dispersion in pentacene thin films. Proceedings of SPIE, 2007, , .	0.8	1
49	New Driving Scheme to Improve Hysteresis Characteristics of Organic Thin Film Transistor-Driven Active-Matrix Organic Light Emitting Diode Display. Japanese Journal of Applied Physics, 2011, 50, 024201.	1.5	1
50	Flexible AMOLED display using an oxide-TFT backplane and inverted OLEDs. , 2014, , .		1
51	Oxide thin-film transistor technology for flexible organic light-emitting diode displays. , 2015, , .		1
52	Effects of Energy-Level Alignment on Characteristics of Inverted Organic Light-Emitting Diodes. ACS Applied Materials & Diodes. ACS Applied Materials & Diodes. ACS	8.0	1
53	20â€3: Universal Method to Inject Electrons into Organic Semiconductors Utilizing Hydrogen Bonds. Digest of Technical Papers SID International Symposium, 2020, 51, 285-288.	0.3	1
54	Fabrication of High Performance Organic Thin Film Transistor Arrays and Application to 5-inch Flexible Displays. Materials Research Society Symposia Proceedings, 2009, 1196, 52.	0.1	0

#	Article	IF	CITATIONS
55	Paper No 10.4: Oxideâ€₹FT–Driven Flexible Display Using Highly Efficient Phosphorescent OLED. Digest of Technical Papers SID International Symposium, 2013, 44, 206-209.	0.3	o
56	Key Materials for Highly Stable Phosphorescent Organic Light-Emitting Diodes with Reduced Amount of Emitter. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 341-342.	0.3	0
57	Energy Level Alignment at Bebq2/PEI/ITO Interfaces Studied by UV Photoemission Spectroscopy. MRS Advances, 2017, 2, 2261-2266.	0.9	O
58	57â€4: Demonstration of Efficient Green OLEDs with High Color Purity. Digest of Technical Papers SID International Symposium, 2017, 48, 853-856.	0.3	0
59	Pâ€169: Operationally Stable Blue Inverted OLEDs Employing Fluorescent Emitter. Digest of Technical Papers SID International Symposium, 2019, 50, 1873-1876.	0.3	0
60	Electron Injection Technique for Practical Application of Flexible Organic Devices. Vacuum and Surface Science, 2021, 64, 10-15.	0.1	0
61	New Driving Scheme to Improve Hysteresis Characteristics of Organic Thin Film Transistor-Driven Active-Matrix Organic Light Emitting Diode Display. Japanese Journal of Applied Physics, 2011, 50, 024201.	1.5	0
62	66â€4: Understanding the Electron Injection/Transport Mechanism in OLEDs by Using a Superbase as Electron Injection Layer. Digest of Technical Papers SID International Symposium, 2022, 53, 889-892.	0.3	0