Tianru Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2541836/publications.pdf

Version: 2024-02-01

107	5,470	39	70
papers	citations	h-index	g-index
107	107	107	7815
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comparison of Beneficial Metabolic Effects of Liraglutide and Semaglutide in Male C57BL/6J Mice. Canadian Journal of Diabetes, 2022, 46, 216-224.e2.	0.4	7
2	Hepatic hormone FGF21 and its analogues in clinical trials. Chronic Diseases and Translational Medicine, 2022, 8, 19-25.	0.9	15
3	Liraglutide stimulates the \hat{l}^2 -catenin signaling cascade in mouse epididymal fat tissue. Journal of Molecular Endocrinology, 2022, 69, 343-356.	1.1	4
4	Hormones that are involved in metabolic homeostasis: Overview of the past century and future perspectives. Obesity Medicine, 2022, 32, 100422.	0.5	О
5	The anti-inflammatory feature of glucagon-like peptide-1 and its based diabetes drugs—Therapeutic potential exploration in lung injury. Acta Pharmaceutica Sinica B, 2022, 12, 4040-4055.	5.7	10
6	Combined use of GABA and sitagliptin promotes human \hat{l}^2 -cell proliferation and reduces apoptosis. Journal of Endocrinology, 2021, 248, 133-143.	1.2	21
7	Friend or foe? ACE2 inhibitors and GLP-1R agonists in COVID-19 treatment. Obesity Medicine, 2021, 22, 100312.	0.5	23
8	Hepatic Fibroblast Growth Factor 21 Is Involved in Mediating Functions of Liraglutide in Mice With Dietary Challenge. Hepatology, 2021, 74, 2154-2169.	3.6	22
9	Estrogen-Wnt signaling cascade regulates expression of hepatic fibroblast growth factor 21. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E292-E304.	1.8	11
10	Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy. Redox Biology, 2021, 45, 102033.	3.9	60
11	Current understanding and controversies on the clinical implications of fibroblast growth factor 21. Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 311-328.	2.7	7
12	Brain function of the metabolic hormone fibroblast growth factor 21. Obesity Medicine, 2020, 17, 100155.	0.5	1
13	Letter to the editor: Comment on GLP-1-based drugs and COVID-19 treatment. Acta Pharmaceutica Sinica B, 2020, 10, 1249-1250.	5.7	19
14	Glucagon-like peptide-1 receptor mediates the beneficial effect of liraglutide in an acute lung injury mouse model involving the thioredoxin-interacting protein. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E568-E578.	1.8	16
15	Dietary Cyanidin-3-Glucoside Attenuates High-Fat-Diet–Induced Body-Weight Gain and Impairment of Glucose Tolerance in Mice via Effects on the Hepatic Hormone FGF21. Journal of Nutrition, 2020, 150, 2101-2111.	1.3	15
16	GABA requires GLP-1R to exert its pancreatic function during STZ challenge. Journal of Endocrinology, 2020, 246, 207-222.	1.2	11
17	370-OR: Hepatic FGF21 Expression Is Under the Regulation of the Canonical Wnt Signaling Pathway. Diabetes, 2020, 69, .	0.3	1
18	Novel GLP-1 Analog Supaglutide Stimulates Insulin Secretion in Mouse and Human Islet Beta-Cells and Improves Glucose Homeostasis in Diabetic Mice. Frontiers in Physiology, 2019, 10, 930.	1.3	9

#	Article	IF	CITATIONS
19	The developmental Wnt signaling pathway effector \hat{l}^2 -catenin/TCF mediates hepatic functions of the sex hormone estradiol in regulating lipid metabolism. PLoS Biology, 2019, 17, e3000444.	2.6	25
20	Liver-derived fibroblast growth factor 21 mediates effects of glucagon-like peptide-1 in attenuating hepatic glucose output. EBioMedicine, 2019, 41, 73-84.	2.7	49
21	Moderate preventative effect with intraperitoneal liraglutide injection in high-fat diet induced C57BL/6J obese mouse model. Obesity Medicine, 2019, 16, 100153.	0.5	2
22	Mechanisms underlying the metabolic beneficial effect of curcumin intervention: Beyond anti-inflammation and anti-oxidative stress. Obesity Medicine, 2019, 13, 1-5.	0.5	11
23	A thorough analysis of diabetes research in China from 1995 to 2015: current scenario and future scope. Science China Life Sciences, 2019, 62, 46-62.	2.3	15
24	The LIM homeodomain protein ISL1 mediates the function of TCF7L2 in pancreatic beta cells. Journal of Molecular Endocrinology, 2018, 61, 1-12.	1.1	18
25	Dietary Curcumin Intervention Targets Mouse White Adipose Tissue Inflammation and Brown Adipose Tissue UCP1 Expression. Obesity, 2018, 26, 547-558.	1.5	62
26	Curcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2. Cell Death and Disease, 2018, 8, e2559-e2559.	2.7	69
27	Curcumin and other dietary polyphenols: potential mechanisms of metabolic actions and therapy for diabetes and obesity. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E201-E205.	1.8	87
28	SIRT1 activation attenuates α cell hyperplasia, hyperglucagonaemia and hyperglycaemia in STZ-diabetic mice. Scientific Reports, 2018, 8, 13972.	1.6	13
29	Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome. Science Immunology, 2017, 2, .	5 . 6	135
30	Pak1 mediates the stimulatory effect of insulin and curcumin on hepatic ChREBP expression. Journal of Molecular Cell Biology, 2017, 9, 384-394.	1.5	6
31	Combined Oral Administration of GABA and DPP-4 Inhibitor Prevents Beta Cell Damage and Promotes Beta Cell Regeneration in Mice. Frontiers in Pharmacology, 2017, 8, 362.	1.6	33
32	Current Knowledge on the Role of Wnt Signaling Pathway in Glucose Homeostasis., 2016,, 357-369.		2
33	The incretin hormone GLPâ€1 and mechanisms underlying its secretion. Journal of Diabetes, 2016, 8, 753-765.	0.8	72
34	Nucleic Acid-Targeting Pathways Promote Inflammation in Obesity-Related Insulin Resistance. Cell Reports, 2016, 16, 717-730.	2.9	77
35	Diet polyphenol curcumin stimulates hepatic Fgf21 production and restores its sensitivity in high fat diet fed male mice. Endocrinology, 2016, 158, jc.2016.1596.	1.4	44
36	Stroke risk in treatment of type 2 diabetes in China: a 7 year retrospective cohort study. Lancet Diabetes and Endocrinology,the, 2016, 4, S15.	5 . 5	0

#	Article	IF	CITATIONS
37	Hepatic functions of GLP-1 and its based drugs: current disputes and perspectives. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E620-E627.	1.8	49
38	Cerebrovascular Safety of Sulfonylureas: The Role of KATP Channels in Neuroprotection and the Risk of Stroke in Patients With Type 2 Diabetes. Diabetes, 2016, 65, 2795-2809.	0.3	56
39	Current Understanding on Role of the Wnt Signaling Pathway Effector TCF7L2 in Glucose Homeostasis. Endocrine Reviews, 2016, 37, 254-277.	8.9	93
40	Current understanding and dispute on the function of the Wnt signaling pathway effector TCF7L2 in hepatic gluconeogenesis. Genes and Diseases, 2016, 3, 48-55.	1.5	8
41	Inhibition of Dexamethasone-induced Fatty Liver Development by Reducing miR-17-5p Levels. Molecular Therapy, 2015, 23, 1222-1233.	3.7	28
42	Liver-Specific Expression of Dominant-Negative Transcription Factor 7-Like 2 Causes Progressive Impairment in Glucose Homeostasis. Diabetes, 2015, 64, 1923-1932.	0.3	48
43	The expression of dominant negative TCF7L2 in pancreatic beta cells during the embryonic stage causes impaired glucose homeostasis. Molecular Metabolism, 2015, 4, 344-352.	3.0	23
44	Short-Term Curcumin Gavage Sensitizes Insulin Signaling in Dexamethasone-Treated C57BL/6 Mice. Journal of Nutrition, 2015, 145, 2300-2307.	1.3	31
45	Activation of cAMP Signaling Attenuates Impaired Hepatic Glucose Disposal in Aged Male p21-Activated Protein Kinase-1 Knockout Mice. Endocrinology, 2014, 155, 2122-2132.	1.4	17
46	TCF7L2 and Wnt Signalling Positively Regulate Leptin Gene Expression in Adipocytes. Canadian Journal of Diabetes, 2014, 38, S3.	0.4	0
47	p21-Activated protein kinases and their emerging roles in glucose homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E707-E722.	1.8	39
48	MicroRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression. Oncotarget, 2014, 5, 2974-2987.	0.8	195
49	Characterization of SHP-1 protein tyrosine phosphatase transcripts, protein isoforms and phosphatase activity in epithelial cancer cells. Genomics, 2013, 102, 491-499.	1.3	13
50	GLP-1(28–36) improves β-cell mass and glucose disposal in streptozotocin-induced diabetic mice and activates cAMP/PKA/β-catenin signaling in β-cells in vitro. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1263-E1272.	1.8	51
51	P21-Activated Protein Kinase 1 (Pak1) Mediates the Cross Talk between Insulin and \hat{l}^2 -Catenin on Proglucagon Gene Expression and Its Ablation Affects Glucose Homeostasis in Male C57BL/6 Mice. Endocrinology, 2013, 154, 77-88.	1.4	37
52	GLP-1-derived nonapeptide GLP-1(28–36)amide represses hepatic gluconeogenic gene expression and improves pyruvate tolerance in high-fat diet-fed mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1348-E1358.	1.8	34
53	The Wnt Signaling Pathway Effector TCF7L2 Controls Gut and Brain Proglucagon Gene Expression and Glucose Homeostasis. Diabetes, 2013, 62, 789-800.	0.3	98
54	New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic \hat{l}^2 -cells. Islets, 2012, 4, 359-365.	0.9	22

#	Article	IF	CITATIONS
55	The role of the Wnt signaling pathway in incretin hormone production and function. Frontiers in Physiology, 2012, 3, 273.	1.3	38
56	Insulin detemir enhances proglucagon gene expression in the intestinal L cells via stimulating \hat{l}^2 -catenin and CREB activities. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E740-E751.	1.8	9
57	Gut Microbiota Metabolism of Anthocyanin Promotes Reverse Cholesterol Transport in Mice Via Repressing miRNA-10b. Circulation Research, 2012, 111, 967-981.	2.0	258
58	The Wnt signaling pathway effector TCF7L2 is upregulated by insulin and represses hepatic gluconeogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1166-E1176.	1.8	64
59	The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: The current understanding, dispute, and perspective. Cell and Bioscience, 2012, 2, 28.	2.1	83
60	Curcumin Prevents High Fat Diet Induced Insulin Resistance and Obesity via Attenuating Lipogenesis in Liver and Inflammatory Pathway in Adipocytes. PLoS ONE, 2012, 7, e28784.	1.1	221
61	GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11692-11697.	3.3	316
62	Actin filament associated protein mediates c-Src related SRE/AP-1 transcriptional activation. FEBS Letters, 2011, 585, 471-477.	1.3	5
63	Oltipraz upregulates the nuclear respiratory factor 2 alpha subunit (NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia, 2011, 54, 922-934.	2.9	151
64	Purified Anthocyanin Supplementation Improves Endothelial Function via NO-cGMP Activation in Hypercholesterolemic Individuals. Clinical Chemistry, 2011, 57, 1524-1533.	1.5	193
65	New insights into the role of cAMP in the production and function of the incretin hormone glucagon-like peptide-1 (GLP-1). Cellular Signalling, 2010, 22, 1-8.	1.7	56
66	Cyclic AMP signaling stimulates proteasome degradation of thioredoxin interacting protein (TxNIP) in pancreatic \hat{l}^2 -cells. Cellular Signalling, 2010, 22, 1240-1246.	1.7	57
67	Oct-1 functions as a sensor for metabolic and stress signals. Islets, 2010, 2, 46-48.	0.9	15
68	Insulin treatment and high-fat diet feeding reduces the expression of three Tcf genes in rodent pancreas. Journal of Endocrinology, 2010, 207, 77-86.	1.2	22
69	Protocatechuic Acid, a Metabolite of Anthocyanins, Inhibits Monocyte Adhesion and Reduces Atherosclerosis in Apolipoprotein E-Deficient Mice. Journal of Agricultural and Food Chemistry, 2010, 58, 12722-12728.	2.4	134
70	Insulin alters the expression of components of the Wnt signaling pathway including TCF-4 in the intestinal cells. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 344-351.	1.1	21
71	Extracellular high dosages of adenosine triphosphate induce inflammatory response and insulin resistance in rat adipocytes. Biochemical and Biophysical Research Communications, 2010, 402, 455-460.	1.0	14
72	A site-specific genomic integration strategy for sustained expression of glucagon-like peptide-1 in mouse muscle for controlling energy homeostasis. Biochemical and Biophysical Research Communications, 2010, 403, 172-177.	1.0	11

#	Article	IF	CITATIONS
73	The Rho Guanosine $5\hat{a}\in^2$ -Triphosphatase, Cell Division Cycle 42, Is Required for Insulin-Induced Actin Remodeling and Glucagon-Like Peptide-1 Secretion in the Intestinal Endocrine L Cell. Endocrinology, 2009, 150, 5249-5261.	1.4	38
74	The role of insulin signaling in the development of \hat{l}^2 -cell dysfunction and diabetes. Islets, 2009, 1, 95-101.	0.9	51
75	POU Homeodomain Protein Oct-1 Functions as a Sensor for Cyclic AMP. Journal of Biological Chemistry, 2009, 284, 26456-26465.	1.6	33
76	Insulin Stimulates the Expression of Carbohydrate Response Element Binding Protein (ChREBP) by Attenuating the Repressive Effect of Pit-1, Oct-1/Oct-2, and Unc-86 Homeodomain Protein Octamer Transcription Factor-1. Endocrinology, 2009, 150, 3483-3492.	1.4	25
77	Epac is involved in cAMP-stimulated proglucagon expression and hormone production but not hormone secretion in pancreatic α- and intestinal L-cell lines. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E174-E181.	1.8	32
78	Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1. Science Foundation in China, 2009, 16, 23-35.	0.3	0
79	The Blimp-1 gene regulatory region directs EGFP expression in multiple hematopoietic lineages and testis in mice. Transgenic Research, 2008, 17, 193-203.	1.3	9
80	The WNT signalling pathway and diabetes mellitus. Diabetologia, 2008, 51, 1771-1780.	2.9	167
81	Both Wnt and mTOR signaling pathways are involved in insulin-stimulated proto-oncogene expression in intestinal cells. Cellular Signalling, 2008, 20, 219-229.	1.7	52
82	Wnt and beyond Wnt: Multiple mechanisms control the transcriptional property of \hat{l}^2 -catenin. Cellular Signalling, 2008, 20, 1697-1704.	1.7	208
83	Why diabetes patients are more prone to the development of colon cancer?. Medical Hypotheses, 2008, 71, 241-244.	0.8	30
84	Transcriptional Regulation of ChREBP Expression: Controlling a Key Player in Lipogenesis. Canadian Journal of Diabetes, 2008, 32, 312.	0.4	0
85	Minireview: The Wnt Signaling Pathway Effector TCF7L2 and Type 2 Diabetes Mellitus. Molecular Endocrinology, 2008, 22, 2383-2392.	3.7	164
86	Mechanisms underlying proglucagon gene expression. Journal of Endocrinology, 2008, 198, 17-28.	1.2	63
87	Cross Talk between the Insulin and Wnt Signaling Pathways: Evidence from Intestinal Endocrine L Cells. Endocrinology, 2008, 149, 2341-2351.	1.4	127
88	Pbx1 is a co-factor for Cdx-2 in regulating proglucagon gene expression in pancreatic A cells. Molecular and Cellular Endocrinology, 2006, 249, 140-149.	1.6	9
89	Role of the Exchange Protein Directly Activated by Cyclic Adenosine 5′-Monophosphate (Epac) Pathway in Regulating Proglucagon Gene Expression in Intestinal Endocrine L Cells. Endocrinology, 2006, 147, 3727-3736.	1.4	45
90	Redundant and Synergistic Effect of Cdx-2 and Brn-4 on Regulating Proglucagon Gene Expression. Endocrinology, 2006, 147, 1950-1958.	1.4	9

#	Article	IF	CITATIONS
91	PKA independent and cell type specific activation of the expression of caudal homeobox gene Cdx-2 by cyclic AMP. FEBS Journal, 2005, 272, 2746-2759.	2.2	33
92	Role of Cdx-2 in insulin and proglucagon gene expression: a study using the RIN-1056A cell line with an inducible gene expression system. Journal of Endocrinology, 2005, 186, 179-192.	1.2	6
93	TCF-4 Mediates Cell Type-specific Regulation of Proglucagon Gene Expression by \hat{l}^2 -Catenin and Glycogen Synthase Kinase-3 \hat{l}^2 . Journal of Biological Chemistry, 2005, 280, 1457-1464.	1.6	359
94	Abnormal splicing of SHP-1 protein tyrosine phosphatase in human T cells. Experimental Hematology, 2003, 31, 131-142.	0.2	22
95	Transcriptional Activation of the Proglucagon Gene by Lithium and \hat{I}^2 -Catenin in Intestinal Endocrine L Cells. Journal of Biological Chemistry, 2003, 278, 1380-1387.	1.6	71
96	The POU homeodomain protein OCT3 as a potential transcriptional activator for fibroblast growth factor-4 (FGF-4) in human breast cancer cells. Biochemical Journal, 2003, 375, 199-205.	1.7	59
97	POU Homeodomain Protein OCT1 Is Implicated in the Expression of the Caudal-related Homeobox Gene Cdx-2. Journal of Biological Chemistry, 2001, 276, 14752-14758.	1.6	31
98	Characterization of a novel silencer element in the human aromatase gene PII promoter. Breast Cancer Research and Treatment, 2000, 62, 151-159.	1.1	30
99	Cell Type-specific Autoregulation of theCaudal-related Homeobox Gene Cdx-2/3. Journal of Biological Chemistry, 1999, 274, 34310-34316.	1.6	58
100	Identification of Domains Mediating Transcriptional Activation and Cytoplasmic Export in the Caudal Homeobox Protein Cdx-3. Journal of Biological Chemistry, 1999, 274, 6011-6019.	1.6	28
101	Examination of POU homeobox gene expression in human breast cancer cells. , 1999, 81, 104-112.		90
102	The Caudal Homeobox Protein cdx-2/3 Activates Endogenous Proglucagon Gene Expression in InR1-G9 Islet Cells. Molecular Endocrinology, 1997, 11, 203-209.	3.7	44
103	Uniparental Mitochondrial Transmission in the Cultivated Button Mushroom, <i>Agaricus bisporus</i> . Applied and Environmental Microbiology, 1994, 60, 4456-4460.	1.4	28
104	Further characterization of a large inverted repeat in the mitochondrial genomes of Agaricus bisporus (=A. brunnescens) and related species. Current Genetics, 1993, 23, 228-233.	0.8	20
105	Investigation of Mitochondrial Transmission in Selected Matings between Homokaryons from Commercial and Wild-Collected Isolates of <i>Agaricus bisporus</i> (= <i>Agaricus brunnescens</i>). Applied and Environmental Microbiology, 1992, 58, 3553-3560.	1.4	34
106	Further studies of swarmer cell differentiation of Proteus mirabilis PM23: a requirement for iron and zinc. Canadian Journal of Microbiology, 1988, 34, 588-593.	0.8	3
107	Urease activity related to the growth and differentiation of swarmer cells of <i>Proteus mirabilis</i> . Canadian Journal of Microbiology, 1987, 33, 300-303.	0.8	10