
Yu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2541549/publications.pdf Version: 2024-02-01

YUMANC

#	Article	IF	CITATIONS
1	In Situ Investigation of Ultrafast Dynamics of Hot Electron-Driven Photocatalysis in Plasmon-Resonant Grating Structures. Journal of the American Chemical Society, 2022, 144, 3517-3526.	13.7	20
2	Enhanced Plasma Generation from Metal Nanostructures via Photoexcited Hot Electrons. Journal of Physical Chemistry C, 2021, 125, 6800-6804.	3.1	6
3	Monitoring Reaction Intermediates in Plasma-Driven SO ₂ , NO, and NO ₂ Remediation Chemistry Using In Situ SERS Spectroscopy. Analytical Chemistry, 2021, 93, 6421-6427.	6.5	8
4	Hot Electron Plasmon-Resonant Grating Structures for Enhanced Photochemistry: A Theoretical Study. Crystals, 2021, 11, 118.	2.2	4
5	CO ₂ Reduction to Higher Hydrocarbons by Plasma Discharge in Carbonated Water. ACS Energy Letters, 2021, 6, 3924-3930.	17.4	7
6	Formation of Brightly Luminescent MoS ₂ Nanoislands from Multilayer Flakes via Plasma Treatment and Laser Exposure. ACS Omega, 2020, 5, 20543-20547.	3.5	2
7	Broadband electroluminescence from reverse breakdown in individual suspended carbon nanotube pn-junctions. Nano Research, 2020, 13, 2857-2861.	10.4	1
8	Enhanced Low-Temperature Thermoelectric Performance in (PbSe) _{1+δ} (VSe ₂) ₁ Heterostructures due to Highly Correlated Electrons in Charge Density Waves. Nano Letters, 2020, 20, 8008-8014.	9.1	6
9	Hot Electron Driven Photocatalysis on Plasmon-Resonant Grating Nanostructures. ACS Applied Materials & Interfaces, 2020, 12, 17459-17465.	8.0	12
10	Monitoring Local Electric Fields using Stark Shifts on Napthyl Nitrile-Functionalized Silicon Photoelectrodes. Journal of Physical Chemistry C, 2020, 124, 17000-17005.	3.1	4
11	Auger Suppression of Incandescence in Individual Suspended Carbon Nanotube pn-Junctions. ACS Applied Materials & Interfaces, 2020, 12, 11907-11912.	8.0	1
12	Stacking Independence and Resonant Interlayer Excitation of Monolayer WSe ₂ /MoSe ₂ Heterostructures for Photocatalytic Energy Conversion. ACS Applied Nano Materials, 2020, 3, 1175-1181.	5.0	7
13	Nanoparticle-Enhanced Plasma Discharge Using Nanosecond High-Voltage Pulses. Journal of Physical Chemistry C, 2020, 124, 7487-7491.	3.1	7
14	Au Nanoparticle Enhancement of Plasma-Driven Methane Conversion into Higher Order Hydrocarbons via Hot Electrons. ACS Applied Nano Materials, 2020, 3, 12388-12393.	5.0	3
15	Ultrafast Dynamics of Hot Electrons in Nanostructures: Distinguishing the Influence on Interband and Plasmon Resonances. ACS Photonics, 2019, 6, 2295-2302.	6.6	18
16	Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts. ACS Applied Materials & Interfaces, 2019, 11, 36252-36258.	8.0	7
17	Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures. Faraday Discussions, 2019, 214, 325-339.	3.2	17
18	Plasmon-Resonant Enhancement of Photocatalysis on Monolayer WSe ₂ . ACS Photonics, 2019, 6, 787-792.	6.6	43

Yu Wang

#	Article	IF	CITATIONS
19	Monitoring Local Electric Fields at Electrode Surfaces Using Surface Enhanced Raman Scattering-Based Stark-Shift Spectroscopy during Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 33678-33683.	8.0	43
20	Flexible Photovoltaic Devices: Highâ€Performance Flexible Nanostructured Silicon Solar Modules with Plasmonically Engineered Upconversion Medium (Adv. Energy Mater. 21/2015). Advanced Energy Materials, 2015, 5, .	19.5	2
21	Highâ€Performance Flexible Nanostructured Silicon Solar Modules with Plasmonically Engineered Upconversion Medium. Advanced Energy Materials, 2015, 5, 1500761.	19.5	30
22	Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges. Fuel Processing Technology, 2003, 83, 101-109.	7.2	139