
Thomas Gillingwater

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2541262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Mutation in the Vesicle-Trafficking Protein VAPB Causes Late-Onset Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis. American Journal of Human Genetics, 2004, 75, 822-831.	6.2	854
2	Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nature Neuroscience, 2001, 4, 1199-1206.	14.8	661
3	Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Human Molecular Genetics, 2008, 17, 949-962.	2.9	333
4	Total Protein Analysis as a Reliable Loading Control for Quantitative Fluorescent Western Blotting. PLoS ONE, 2013, 8, e72457.	2.5	300
5	Spinal muscular atrophy: going beyond the motor neuron. Trends in Molecular Medicine, 2013, 19, 40-50.	6.7	296
6	Alternative Splicing Events Are a Late Feature of Pathology in a Mouse Model of Spinal Muscular Atrophy. PLoS Genetics, 2009, 5, e1000773.	3.5	210
7	Synaptic Vulnerability in Neurodegenerative Disease. Journal of Neuropathology and Experimental Neurology, 2006, 65, 733-739.	1.7	189
8	Advances in therapy for spinal muscular atrophy: promises and challenges. Nature Reviews Neurology, 2018, 14, 214-224.	10.1	174
9	Cellular and Molecular Anatomy of the Human Neuromuscular Junction. Cell Reports, 2017, 21, 2348-2356.	6.4	158
10	Emerging therapies and challenges in spinal muscular atrophy. Annals of Neurology, 2017, 81, 355-368.	5.3	157
11	Progressive abnormalities in skeletal muscle and neuromuscular junctions of transgenic mice expressing the Huntington's disease mutation. European Journal of Neuroscience, 2004, 20, 3092-3114.	2.6	151
12	Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. Journal of Clinical Investigation, 2014, 124, 1821-1834.	8.2	151
13	WldS Prevents Axon Degeneration through Increased Mitochondrial Flux and Enhanced Mitochondrial Ca2+ Buffering. Current Biology, 2012, 22, 596-600.	3.9	135
14	riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. PLoS Computational Biology, 2018, 14, e1006169.	3.2	132
15	VAPB interacts with and modulates the activity of ATF6. Human Molecular Genetics, 2008, 17, 1517-1526.	2.9	130
16	The role of survival motor neuron protein (SMN) in protein homeostasis. Cellular and Molecular Life Sciences, 2018, 75, 3877-3894.	5.4	125
17	Review: Neuromuscular synaptic vulnerability in motor neurone disease: amyotrophic lateral sclerosis and spinal muscular atrophy. Neuropathology and Applied Neurobiology, 2010, 36, 133-156.	3.2	123
18	Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nature Communications, 2015, 6, 6761.	12.8	119

#	Article	IF	CITATIONS
19	The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. DMM Disease Models and Mechanisms, 2011, 4, 457-467.	2.4	113
20	Transcriptional Regulation of the AP-1 and Nrf2 Target Gene Sulfiredoxin. Molecules and Cells, 2009, 27, 279-283.	2.6	110
21	UBA1: At the Crossroads of Ubiquitin Homeostasis and Neurodegeneration. Trends in Molecular Medicine, 2015, 21, 622-632.	6.7	108
22	SMN deficiency disrupts brain development in a mouse model of severe spinal muscular atrophy. Human Molecular Genetics, 2010, 19, 4216-4228.	2.9	105
23	The slow Wallerian degeneration gene, WldS, inhibits axonal spheroid pathology in gracile axonal dystrophy mice. Brain, 2004, 128, 405-416.	7.6	101
24	NMJ-morph reveals principal components of synaptic morphology influencing structure–function relationships at the neuromuscular junction. Open Biology, 2016, 6, 160240.	3.6	99
25	Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy. Human Molecular Genetics, 2010, 19, 420-433.	2.9	98
26	Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta Neuropathologica, 2018, 135, 213-226.	7.7	97
27	Studying synapses in human brain with array tomography and electron microscopy. Nature Protocols, 2013, 8, 1366-1380.	12.0	95
28	Compartmental neurodegeneration and synaptic plasticity in the Wld s mutant mouse. Journal of Physiology, 2001, 534, 627-639.	2.9	90
29	Reversible molecular pathology of skeletal muscle in spinal muscular atrophy. Human Molecular Genetics, 2011, 20, 4334-4344.	2.9	89
30	InÂVivo Translatome Profiling in Spinal Muscular Atrophy Reveals a Role for SMN Protein in Ribosome Biology. Cell Reports, 2017, 21, 953-965.	6.4	89
31	Molecular correlates of axonal and synaptic pathology in mouse models of Batten disease. Human Molecular Genetics, 2009, 18, 4066-4080.	2.9	88
32	Therapeutic strategies for spinal muscular atrophy: SMN and beyond. DMM Disease Models and Mechanisms, 2017, 10, 943-954.	2.4	87
33	Region-specific depletion of synaptic mitochondria in the brains of patients with Alzheimer's disease. Acta Neuropathologica, 2018, 136, 747-757.	7.7	87
34	Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathologica, 2010, 120, 461-475.	7.7	86
35	Altered maturation of the primary somatosensory cortex in a mouse model of fragile X syndrome. Human Molecular Genetics, 2012, 21, 2143-2156.	2.9	84
36	Ageâ€Dependent Synapse Withdrawal at Axotomised Neuromuscular Junctions in Wld ^s Mutant and Ube4b/Nmnat Transgenic Mice. Journal of Physiology, 2002, 543, 739-755.	2.9	83

#	Article	IF	CITATIONS
37	Differential Proteomics Analysis of Synaptic Proteins Identifies Potential Cellular Targets and Protein Mediators of Synaptic Neuroprotection Conferred by the Slow Wallerian Degeneration (Wld) Gene. Molecular and Cellular Proteomics, 2007, 6, 1318-1330.	3.8	82
38	A rat model of slow Wallerian degeneration (WldS) with improved preservation of neuromuscular synapses. European Journal of Neuroscience, 2005, 21, 271-277.	2.6	81
39	Retinoid-independent motor neurogenesis from human embryonic stem cells reveals a medial columnar ground state. Nature Communications, 2011, 2, 214.	12.8	81
40	Synaptic Changes in the Thalamocortical System of Cathepsin D-Deficient Mice. Journal of Neuropathology and Experimental Neurology, 2008, 67, 16-29.	1.7	79
41	Vascular <scp>D</scp> efects and <scp>S</scp> pinal <scp>C</scp> ord <scp>H</scp> ypoxia in <scp> S</scp> pinal <scp>M</scp> uscular <scp>A</scp> trophy. Annals of Neurology, 2016, 79, 217-230.	5.3	79
42	COVIDâ€19 and anatomy: Stimulus and initial response. Journal of Anatomy, 2020, 237, 393-403.	1.5	74
43	Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Annals of Clinical and Translational Neurology, 2019, 6, 1519-1532.	3.7	72
44	mGluR5 Regulates Glutamate-Dependent Development of the Mouse Somatosensory Cortex. Journal of Neuroscience, 2008, 28, 13028-13037.	3.6	71
45	Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genetics, 2017, 13, e1006744.	3.5	69
46	Neuroprotection after Transient Global Cerebral Ischemia in Wlds Mutant Mice. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 62-66.	4.3	66
47	Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight, 2016, 1, e87908.	5.0	65
48	Morphological analysis of neuromuscular junction development and degeneration in rodent lumbrical muscles. Journal of Neuroscience Methods, 2014, 227, 159-165.	2.5	64
49	Identity, developmental restriction and reactivity of extralaminar cells capping mammalian neuromuscular junctions. Journal of Cell Science, 2008, 121, 3901-3911.	2.0	63
50	Executive deficits, not processing speed relates to abnormalities in distinct prefrontal tracts in amyotrophic lateral sclerosis. Brain, 2013, 136, 3290-3304.	7.6	63
51	SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy. Human Molecular Genetics, 2014, 23, 2235-2250.	2.9	62
52	Genomic Analyses of Pre-European Conquest Human Remains from the Canary Islands Reveal Close Affinity to Modern North Africans. Current Biology, 2017, 27, 3396-3402.e5.	3.9	62
53	VAMP4 Is an Essential Cargo Molecule for Activity-Dependent Bulk Endocytosis. Neuron, 2015, 88, 973-984.	8.1	60
54	Mechanisms underlying synaptic vulnerability and degeneration in neurodegenerative disease. Neuropathology and Applied Neurobiology, 2013, 39, 320-334.	3.2	58

#	Article	IF	CITATIONS
55	Exclusive expression of MeCP2 in the nervous system distinguishes between brain and peripheral Rett syndrome-like phenotypes. Human Molecular Genetics, 2016, 25, ddw269.	2.9	57
56	Spinal muscular atrophy: From approved therapies to future therapeutic targets for personalized medicine. Cell Reports Medicine, 2021, 2, 100346.	6.5	57
57	Delayed synaptic degeneration in the CNS of Wlds mice after cortical lesion. Brain, 2006, 129, 1546-1556.	7.6	55
58	Temporal and tissue-specific variability of SMN protein levels in mouse models of spinal muscular atrophy. Human Molecular Genetics, 2018, 27, 2851-2862.	2.9	55
59	Combining Comparative Proteomics and Molecular Genetics Uncovers Regulators of Synaptic and Axonal Stability and Degeneration In Vivo. PLoS Genetics, 2012, 8, e1002936.	3.5	54
60	Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Scientific Reports, 2016, 6, 34635.	3.3	54
61	Overview of Current Drugs and Molecules in Development for Spinal Muscular Atrophy Therapy. Drugs, 2018, 78, 293-305.	10.9	53
62	The relationship of neuromuscular synapse elimination to synaptic degeneration and pathology: Insights from WldSand other mutant mice. Journal of Neurocytology, 2003, 32, 863-881.	1.5	52
63	SMN-primed ribosomes modulate the translation of transcripts related to spinal muscular atrophy. Nature Cell Biology, 2020, 22, 1239-1251.	10.3	52
64	Pro-death NMDA receptor signaling is promoted by the GluN2B C-terminus independently of Dapk1. ELife, 2017, 6, .	6.0	52
65	Active Ribosome Profiling with RiboLace. Cell Reports, 2018, 25, 1097-1108.e5.	6.4	51
66	Progressive Loss of Motor Neuron Function in Wasted Mice: Effects of a Spontaneous Null Mutation in the Gene for the eEF1A2 Translation Factor. Journal of Neuropathology and Experimental Neurology, 2005, 64, 295-303.	1.7	50
67	Moving towards treatments for spinal muscular atrophy: hopes and limits. Expert Opinion on Emerging Drugs, 2015, 20, 353-356.	2.4	50
68	Density, calibre and ramification of muscle capillaries are altered in a mouse model of severe spinal muscular atrophy. Neuromuscular Disorders, 2012, 22, 435-442.	0.6	49
69	PTEN Depletion Decreases Disease Severity and Modestly Prolongs Survival in a Mouse Model of Spinal Muscular Atrophy. Molecular Therapy, 2015, 23, 270-277.	8.2	47
70	The neuroprotective WldS gene regulates expression of PTTG1 and erythroid differentiation regulator 1-like gene in mice and human cells. Human Molecular Genetics, 2006, 15, 625-635.	2.9	44
71	Synaptic Ras GTPase Activating Protein Regulates Pattern Formation in the Trigeminal System of Mice. Journal of Neuroscience, 2006, 26, 1355-1365.	3.6	44
72	Development of a supported selfâ€directed learning approach for anatomy education. Anatomical Sciences Education, 2012, 5, 114-121.	3.7	44

#	Article	IF	CITATIONS
73	Effect of Limb Lengthening on Internodal Length and Conduction Velocity of Peripheral Nerve. Journal of Neuroscience, 2013, 33, 4536-4539.	3.6	43
74	The Armadillo as a Model for Peripheral Neuropathy in Leprosy. ILAR Journal, 2014, 54, 304-314.	1.8	43
75	Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture. Molecular Neurodegeneration, 2017, 12, 77.	10.8	43
76	Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy. Journal of Anatomy, 2016, 228, 443-451.	1.5	42
77	Survival of motor neurone protein is required for normal postnatal development of the spleen. Journal of Anatomy, 2017, 230, 337-346.	1.5	42
78	Label-Free Quantitative Proteomic Profiling Identifies Disruption of Ubiquitin Homeostasis As a Key Driver of Schwann Cell Defects in Spinal Muscular Atrophy. Journal of Proteome Research, 2014, 13, 4546-4557.	3.7	39
79	Loss of Glial Neurofascin155 Delays Developmental Synapse Elimination at the Neuromuscular Junction. Journal of Neuroscience, 2014, 34, 12904-12918.	3.6	39
80	A novel mouse model of Warburg Micro Syndrome reveals roles for RAB18 in eye development and organisation of the neuronal cytoskeleton. DMM Disease Models and Mechanisms, 2014, 7, 711-22.	2.4	38
81	Using induced pluripotent stem cells (iPSC) to model human neuromuscular connectivity: promise or reality?. Journal of Anatomy, 2012, 220, 122-130.	1.5	37
82	Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice. EBioMedicine, 2018, 31, 226-242.	6.1	37
83	Involvement of Protein Kinase A in Patterning of the Mouse Somatosensory Cortex. Journal of Neuroscience, 2006, 26, 5393-5401.	3.6	36
84	The importance of exposure to human material in anatomical education: A philosophical perspective. Anatomical Sciences Education, 2008, 1, 264-266.	3.7	36
85	Protein product of <i>CLN6</i> gene responsible for variant lateâ€onset infantile neuronal ceroid lipofuscinosis interacts with CRMPâ€2. Journal of Neuroscience Research, 2009, 87, 2157-2166.	2.9	36
86	The Anatomical Society's core anatomy syllabus for undergraduate nursing. Journal of Anatomy, 2018, 232, 721-728.	1.5	36
87	Comparative anatomy of the mammalian neuromuscular junction. Journal of Anatomy, 2020, 237, 827-836.	1.5	36
88	Neuromuscular junctions are stable in patients with cancer cachexia. Journal of Clinical Investigation, 2020, 130, 1461-1465.	8.2	35
89	Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in vivo. Scientific Reports, 2017, 7, 12412.	3.3	34
90	Morphological Characteristics of Motor Neurons Do Not Determine Their Relative Susceptibility to Degeneration in a Mouse Model of Severe Spinal Muscular Atrophy. PLoS ONE, 2012, 7, e52605.	2.5	32

#	Article	IF	CITATIONS
91	Restoration of SMN in Schwann cells reverses myelination defects and improves neuromuscular function in spinal muscular atrophy. Human Molecular Genetics, 2016, 25, ddw141.	2.9	32
92	Label-free proteomics identifies Calreticulin and GRP75/Mortalin as peripherally accessible protein biomarkers for spinal muscular atrophy. Genome Medicine, 2013, 5, 95.	8.2	31
93	A Guide to Modern Quantitative Fluorescent Western Blotting with Troubleshooting Strategies. Journal of Visualized Experiments, 2014, , e52099.	0.3	31
94	Morphologic and Functional Correlates of Synaptic Pathology in the Cathepsin D Knockout Mouse Model of Congenital Neuronal Ceroid Lipofuscinosis. Journal of Neuropathology and Experimental Neurology, 2011, 70, 1089-1096.	1.7	30
95	Commonality amid diversity: Multi-study proteomic identification of conserved disease mechanisms in spinal muscular atrophy. Neuromuscular Disorders, 2016, 26, 560-569.	0.6	30
96	ApoE isoform-specific regulation of regeneration in the peripheral nervous system. Human Molecular Genetics, 2011, 20, 2406-2421.	2.9	29
97	UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy. Brain, 2018, 141, 2878-2894.	7.6	29
98	Loss of translation elongation factor (<i>eEF1A2</i>) expression <i> in vivo </i> differentiates between Wallerian degeneration and dyingâ€back neuronal pathology. Journal of Anatomy, 2008, 213, 633-645.	1.5	28
99	Murine cathepsin D deficiency is associated with dysmyelination/myelin disruption and accumulation of cholesteryl esters in the brain. Journal of Neurochemistry, 2010, 112, 193-203.	3.9	28
100	Molecular neuropathology of the synapse in sheep with <scp>CLN</scp> 5 Batten disease. Brain and Behavior, 2015, 5, e00401.	2.2	28
101	Using mouse cranial muscles to investigate neuromuscular pathology in vivo. Neuromuscular Disorders, 2010, 20, 740-743.	0.6	26
102	Modified cell cycle status in a mouse model of altered neuronal vulnerability (slow Wallerian) Tj ETQq0 0 0 rgBT /	Overlock 1 9.6	10 Tf 50 302
103	Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathologica Communications, 2015, 3, 53.	5.2	25
104	Viral delivery of C9ORF72 hexanucleotide repeat expansions in mice lead to repeat length dependent neuropathology and behavioral deficits DMM Disease Models and Mechanisms, 2017, 10, 859-868.	2.4	25
105	A neurological phenotype in mice with DNA repair gene Ercc1 deficiency. DNA Repair, 2008, 7, 281-291.	2.8	24
106	Molecular Mechanisms Underlying Sensory-Motor Circuit Dysfunction in SMA. Frontiers in Molecular Neuroscience, 2019, 12, 59.	2.9	24
107	Induction of Cell Stress in Neurons from Transgenic Mice Expressing Yellow Fluorescent Protein: Implications for Neurodegeneration Research. PLoS ONE, 2011, 6, e17639.	2.5	24
108	Increased levels of <scp>UCHL</scp> 1 are a compensatory response to disrupted ubiquitin homeostasis in spinal muscular atrophy and do not represent a viable therapeutic target. Neuropathology and Applied Neurobiology, 2014, 40, 873-887.	3.2	23

#	Article	IF	CITATIONS
109	Analysis of gene expression in the nervous system identifies key genes and novel candidates for health and disease. Neurogenetics, 2017, 18, 81-95.	1.4	23
110	Pre-natal manifestation of systemic developmental abnormalities in spinal muscular atrophy. Human Molecular Genetics, 2020, 29, 2674-2683.	2.9	23
111	Anatomical sciences at the University of Edinburgh: Initial experiences of teaching anatomy online. Translational Research in Anatomy, 2020, 19, 100065.	0.6	22
112	Ultrastructural correlates of synapse withdrawal at axotomized neuromuscular junctions in mutant and transgenic mice expressing the Wld gene. Journal of Anatomy, 2003, 203, 265-276.	1.5	21
113	Regional Molecular Mapping of Primate Synapses during Normal Healthy Aging. Cell Reports, 2019, 27, 1018-1026.e4.	6.4	20
114	Terminal Schwann cells at the human neuromuscular junction. Brain Communications, 2021, 3, fcab081.	3.3	20
115	Sideroflexin 3 is a α-synuclein-dependent mitochondrial protein that regulates synaptic morphology. Journal of Cell Science, 2017, 130, 325-331.	2.0	19
116	aNMJ-morph: a simple macro for rapid analysis of neuromuscular junction morphology. Royal Society Open Science, 2020, 7, 200128.	2.4	19
117	Dissection of the Transversus Abdominis Muscle for Whole-mount Neuromuscular Junction Analysis. Journal of Visualized Experiments, 2014, , e51162.	0.3	17
118	Activity-dependent degeneration of axotomized neuromuscular synapses in WldS mice. Neuroscience, 2015, 290, 300-320.	2.3	17
119	Upregulation of PKD1L2 provokes a complex neuromuscular disease in the mouse. Human Molecular Genetics, 2009, 18, 3553-3566.	2.9	16
120	Quantitative tractography and tract shape modeling in amyotrophic lateral sclerosis. Journal of Magnetic Resonance Imaging, 2013, 38, 1140-1145.	3.4	16
121	Developmental and degenerative cardiac defects in the Taiwanese mouse model of severe spinal muscular atrophy. Journal of Anatomy, 2018, 232, 965-978.	1.5	16
122	SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 354-377.e3.	4.5	16
123	Rapid loss of motor nerve terminals following hypoxia–reperfusion injury occurs via mechanisms distinct from classic Wallerian degeneration. Journal of Anatomy, 2008, 212, 827-835.	1.5	15
124	VCP binding influences intracellular distribution of the slow Wallerian degeneration protein, WldS. Molecular and Cellular Neurosciences, 2008, 38, 325-340.	2.2	15
125	Multi-Study Proteomic and Bioinformatic Identification of Molecular Overlap between Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA). Brain Sciences, 2018, 8, 212.	2.3	15
126	Motor neuron translatome reveals deregulation of SYNGR4 and PLEKHB1 in mutant TDP-43 amyotrophic lateral sclerosis models. Human Molecular Genetics, 2020, 29, 2647-2661.	2.9	15

#	Article	IF	CITATIONS
127	Myo-GDNF increases non-functional polyinnervation of reinnervated mouse muscle. NeuroReport, 2004, 15, 21-25.	1.2	14
128	Neurochondrin interacts with the SMN protein suggesting a novel mechanism for Spinal Muscular Atrophy pathology. Journal of Cell Science, 2018, 131, .	2.0	14
129	Immature Dentate Granule Cells Require Ntrk2/Trkb for the Formation of Functional Hippocampal Circuitry. IScience, 2020, 23, 101078.	4.1	14
130	Revisiting the role of mitochondria in spinal muscular atrophy. Cellular and Molecular Life Sciences, 2021, 78, 4785-4804.	5.4	14
131	Increasing SMN levels using the histone deacetylase inhibitor SAHA ameliorates defects in skeletal muscle microvasculature in a mouse model of severe spinal muscular atrophy. Neuroscience Letters, 2013, 544, 100-104.	2.1	13
132	Renal pathology in a mouse model of severe Spinal Muscular Atrophy is associated with downregulation of Glial Cell-Line Derived Neurotrophic Factor (GDNF). Human Molecular Genetics, 2020, 29, 2365-2378.	2.9	13
133	Synaptic Protection in the Brain of WldS Mice Occurs Independently of Age but Is Sensitive to Gene-Dose. PLoS ONE, 2010, 5, e15108.	2.5	12
134	Robust Comparison of Protein Levels Across Tissues and Throughout Development Using Standardized Quantitative Western Blotting. Journal of Visualized Experiments, 2019, , .	0.3	12
135	Automated <i>in vivo</i> drug screen in zebrafish identifies synapse-stabilising drugs with relevance to spinal muscular atrophy. DMM Disease Models and Mechanisms, 2021, 14, .	2.4	12
136	Design of a novel quantitative PCR (QPCR)-based protocol for genotyping mice carrying the neuroprotective Wallerian degeneration slow (Wlds) gene. Molecular Neurodegeneration, 2007, 2, 21.	10.8	11
137	Axotomy-dependent and -independent synapse elimination in organ cultures of Wlds mutant mouse skeletal muscle. Journal of Neuroscience Research, 2004, 76, 64-75.	2.9	10
138	The response of neuromuscular junctions to injury is developmentally regulated. FASEB Journal, 2011, 25, 1306-1313.	0.5	10
139	Historical Tropical Forest Reliance amongst the Wanniyalaeto (Vedda) of Sri Lanka: an Isotopic Perspective. Human Ecology, 2018, 46, 435-444.	1.4	9
140	Lamin A/C dysregulation contributes to cardiac pathology in a mouse model of severe spinal muscular atrophy. Human Molecular Genetics, 2019, 28, 3515-3527.	2.9	9
141	Examining the impact of audience response systems on student performance in anatomy education: a randomised controlled trial. Scottish Medical Journal, 2018, 63, 16-21.	1.3	8
142	Counting the cost of spinal muscular atrophy. Journal of Medical Economics, 2016, 19, 827-828.	2.1	7
143	Targeting synaptic pathology in multiple sclerosis: fingolimod to the rescue?. British Journal of Pharmacology, 2012, 165, 858-860.	5.4	6
144	The influence of storage parameters on measurement of survival motor neuron (SMN) protein levels: Implications for pre-clinical studies and clinical trials for spinal muscular atrophy. Neuromuscular Disorders, 2014, 24, 973-977.	0.6	6

#	Article	IF	CITATIONS
145	Anatomy: back in the public spotlight. Lancet, The, 2015, 385, 1825.	13.7	6
146	Dawn of a new therapeutic era for spinal muscular atrophy. Lancet, The, 2016, 388, 2964-2965.	13.7	6
147	A new core gross anatomy syllabus for medicine. Anatomical Sciences Education, 2016, 9, 209-210.	3.7	6
148	Expression of the neuroprotective slow Wallerian degeneration (Wld S) gene in non-neuronal tissues. BMC Neuroscience, 2009, 10, 148.	1.9	5
149	Neutralisation of SARS oVâ€2 by anatomical embalming solutions. Journal of Anatomy, 2021, 239, 1221-1225.	1.5	5
150	Anatomical, functional and biomechanical review of the glenoid labrum. Journal of Anatomy, 2022, 240, 761-771.	1.5	4
151	264th ENMC International Workshop: Multi-system involvement in spinal muscular atrophy Hoofddorp, the Netherlands, November 19th – 21st 2021. Neuromuscular Disorders, 2022, 32, 697-705.	0.6	4
152	How far away is spinal muscular atrophy gene therapy?. Expert Review of Neurotherapeutics, 2015, 15, 965-968.	2.8	3
153	Putting gross anatomy into the curriculum: New anatomy syllabi for nursing and pharmacy students. Anatomical Sciences Education, 2018, 11, 427-428.	3.7	2
154	Improving surgical training: Establishing a surgical anatomy programme in Scotland. International Journal of Surgery, 2021, 96, 106172.	2.7	2
155	The mitochondrial protein Sideroflexin 3 (SFXN3) influences neurodegeneration pathways <i>inÂvivo</i> . FEBS Journal, 2022, 289, 3894-3914.	4.7	2
156	A call to introduce newborn screening for spinal muscular atrophy (SMA) in Scotland. Scottish Medical Journal, 2022, , 003693302210789.	1.3	2
157	Editorial – Journal of Anatomy January 2017. Journal of Anatomy, 2017, 230, 1-3.	1.5	1
158	Maximising returns: combining newborn screening with gene therapy for spinal muscular atrophy. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, jnnp-2021-327459.	1.9	1
159	Revealing the secrets of the dead. Lancet, The, 2016, 388, 1974.	13.7	0
160	Two Cases of Spinal Muscular Atrophy Type II with Eosinophilic Oesophagitis. Journal of Neuromuscular Diseases, 2017, 4, 357-362.	2.6	0
161	Editorial. Journal of Anatomy, 2018, 232, 1-2.	1.5	0
162	Confocal Endomicroscopy of Neuromuscular Junctions Stained with Physiologically Inert Protein Fragments of Tetanus Toxin. Biomolecules, 2021, 11, 1499.	4.0	0

#	Article	IF	CITATIONS
163	Temporal Profiling of the Cortical Synaptic Mitochondrial Proteome Identifies Ageing Associated Regulators of Stability. Cells, 2021, 10, 3403.	4.1	0
164	Phospho-RNA sequencing with circAID-p-seq. Nucleic Acids Research, 2021, , .	14.5	0