Jason A Hubbart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2540798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated assessment of nitrogen runoff to the Gulf of Mexico. Resources and Energy Economics, 2022, 67, 101279.	1.1	7
2	A Comparison of Stream Water and Shallow Groundwater Suspended Sediment Concentrations in a West Virginia Mixed-Use, Agro-Forested Watershed. Land, 2022, 11, 506.	1.2	1
3	Biodiversity Monitoring of a Riparian Wetland in a Mixed-Use Watershed in the Central Appalachians, USA, before Restoration. Diversity, 2022, 14, 304.	0.7	4
4	The occurrence and transport of microplastics: The state of the science. Science of the Total Environment, 2021, 758, 143936.	3.9	126
5	The Fernow Experimental Forest, West Virginia, <scp>USA</scp> : Insights, datasets, and opportunities. Hydrological Processes, 2021, 35, e14106.	1.1	3
6	Measuring and modeling event-based environmental flows: An assessment of HEC-RAS 2D rain-on-grid simulations. Journal of Environmental Management, 2021, 285, 112125.	3.8	35
7	Land use intensification destabilizes stream microbial biodiversity and decreases metabolic efficiency. Science of the Total Environment, 2021, 767, 145440.	3.9	6
8	Rainfall, runoff and shallow groundwater response in a mixedâ€use, agroâ€forested watershed of the northeast, <scp>USA</scp> . Hydrological Processes, 2021, 35, e14312.	1.1	5
9	Stream sediment bacterial communities exhibit temporally-consistent and distinct thresholds to land use change in a mixed-use watershed. FEMS Microbiology Ecology, 2021, 97, .	1.3	9
10	Assessment of Agricultural Water Requirements for Semi-Arid Areas: A Case Study of the Boufakrane River Watershed (Morocco). Applied Sciences (Switzerland), 2021, 11, 10379.	1.3	8
11	A Call to Broaden Investment in Drinking Water Testing and Community Outreach Programs. Challenges, 2021, 12, 32.	0.9	5
12	Improving Best Management Practice Decisions in Mixed Land Use and/or Municipal Watersheds: Should Approaches Be Standardized?. Land, 2021, 10, 1402.	1.2	5
13	Challenges for the Island of Barbuda: A Distinct Cultural and Ecological Island Ecosystem at the Precipice of Change. Challenges, 2020, 11, 12.	0.9	4
14	Physical Factors Impacting the Survival and Occurrence of Escherichia coli in Secondary Habitats. Water (Switzerland), 2020, 12, 1796.	1.2	33
15	A Comparison and Validation of Saturated Hydraulic Conductivity Models. Water (Switzerland), 2020, 12, 2040.	1.2	15
16	Integrated Water Resources Research: Advancements in Understanding to Improve Future Sustainability. Water (Switzerland), 2020, 12, 2208.	1.2	4
17	Spatial and Temporal Characterization of Escherichia coli, Suspended Particulate Matter and Land Use Practice Relationships in a Mixed-Land Use Contemporary Watershed. Water (Switzerland), 2020, 12, 1228.	1.2	10
18	Quantifying Escherichia coli and Suspended Particulate Matter Concentrations in a Mixed-Land Use Appalachian Watershed. Water (Switzerland), 2020, 12, 532.	1.2	15

#	Article	IF	CITATIONS
19	A Spatially Distributed Investigation of Stream Water Temperature in a Contemporary Mixed-Land-Use Watershed. Water (Switzerland), 2020, 12, 1756.	1.2	13
20	Advancing Understanding of Land Use and Physicochemical Impacts on Fecal Contamination in Mixed-Land-Use Watersheds. Water (Switzerland), 2020, 12, 1094.	1.2	15
21	Flow class analyses of suspended sediment concentration and particle size in a mixed-land-use watershed. Science of the Total Environment, 2019, 648, 973-983.	3.9	15
22	Phosphorus and the Chesapeake Bay: Lingering Issues and Emerging Concerns for Agriculture. Journal of Environmental Quality, 2019, 48, 1191-1203.	1.0	48
23	Characterizing Land Use Impacts on Channel Geomorphology and Streambed Sedimentological Characteristics. Water (Switzerland), 2019, 11, 1088.	1.2	7
24	Observed Mesoscale Hydroclimate Variability of North America's Allegheny Mountains at 40.2° N. Climate, 2019, 7, 91.	1.2	7
25	Quantifying relationships between watershed characteristics and hydroecological indices of Missouri streams. Science of the Total Environment, 2019, 654, 1305-1315.	3.9	3
26	Climatic Trends of West Virginia: A Representative Appalachian Microcosm. Water (Switzerland), 2019, 11, 1117.	1.2	12
27	Observed climatic changes in West Virginia and opportunities for agriculture. Regional Environmental Change, 2019, 19, 1087-1099.	1.4	4
28	A Case-Study Application of the Experimental Watershed Study Design to Advance Adaptive Management of Contemporary Watersheds. Water (Switzerland), 2019, 11, 2355.	1.2	22
29	A method for advancing understanding of streamflow and geomorphological characteristics in mixed-land-use watersheds. Science of the Total Environment, 2019, 657, 634-643.	3.9	9
30	Quantifying relationships between urban land use and flow frequency of small Missouri streams. Science of the Total Environment, 2019, 659, 1008-1015.	3.9	5
31	Quantifying land use influences on event-based flow frequency, timing, magnitude, and rate of change in an urbanizing watershed of the central USA. Environmental Earth Sciences, 2018, 77, 1.	1.3	9
32	Spatiotemporal variability of suspended sediment particle size in a mixed-land-use watershed. Science of the Total Environment, 2018, 615, 1164-1175.	3.9	15
33	Land use impacts on floodplain water table response to precipitation events. Ecohydrology, 2018, 11, e1913.	1.1	4
34	Variable Streamflow Contributions in Nested Subwatersheds of a US Midwestern Urban Watershed. Water Resources Management, 2018, 32, 213-228.	1.9	14
35	Symmetry of Energy Divergence Anomalies Associated with the El Niño-Southern Oscillation. Atmosphere, 2018, 9, 342.	1.0	0
36	Land-use-mediated Escherichia coli concentrations in a contemporary Appalachian watershed. Environmental Earth Sciences, 2018, 77, 1.	1.3	14

#	Article	IF	CITATIONS
37	Changing Climatic Averages and Variance: Implications for Mesophication at the Eastern Edge of North America's Eastern Deciduous Forest. Forests, 2018, 9, 605.	0.9	15
38	Characterization of sub-watershed-scale stream chemistry regimes in an Appalachian mixed-land-use watershed. Environmental Monitoring and Assessment, 2018, 190, 586.	1.3	21
39	An integrated modeling approach for estimating hydrologic responses to future urbanization and climate changes in a mixed-use midwestern watershed. Journal of Environmental Management, 2018, 220, 149-162.	3.8	37
40	Forest productivity varies with soil moisture more than temperature in a small montane watershed. Agricultural and Forest Meteorology, 2018, 259, 211-221.	1.9	15
41	Rainfall–stream flow responses in a mixed-land-use and municipal watershed of the central USA. Environmental Earth Sciences, 2018, 77, 1.	1.3	4
42	Accuracy and Optimal Altitude for Physical Habitat Assessment (PHA) of Stream Environments Using Unmanned Aerial Vehicles (UAV). Drones, 2018, 2, 20.	2.7	8
43	Assessing the Difference between Soil and Water Assessment Tool (SWAT) Simulated Pre-Development and Observed Developed Loading Regimes. Hydrology, 2018, 5, 29.	1.3	3
44	Assessing Environmental Flow Targets Using Pre-Settlement Land Cover: A SWAT Modeling Application. Water (Switzerland), 2018, 10, 791.	1.2	11
45	Considering the Future of Water Resources: A Call for Investigations that Include the Cultural Anthropology of Water. Global Journal of Archaeology & Anthropology, 2018, 3, .	0.1	2
46	Integrating downscaled CMIP5 data with a physically based hydrologic model to estimate potential climate change impacts on streamflow processes in a mixed-use watershed. Hydrological Processes, 2017, 31, 1790-1803.	1.1	44
47	Application of the experimental watershed approach to advance urban watershed precipitation/discharge understanding. Urban Ecosystems, 2017, 20, 799-810.	1.1	13
48	Improving understanding of mixed-land-use watershed suspended sediment regimes: Mechanistic progress through high-frequency sampling. Science of the Total Environment, 2017, 598, 228-238.	3.9	19
49	Snow disappearance timing is dominated by forest effects on snow accumulation in warm winter climates of the Pacific Northwest, United States. Hydrological Processes, 2017, 31, 1846-1862.	1.1	62
50	Symmetric and asymmetric components of anomalous tropospheric-mean horizontal fluxes of latent and sensible heat associated with ENSO events of variable magnitude. Atmospheric Research, 2017, 198, 173-184.	1.8	2
51	Quantifying flow interval–pollutant loading relationships in a rapidly urbanizing mixed-land-use watershed of the Central USA. Environmental Earth Sciences, 2017, 76, 1.	1.3	14
52	Confounded by forgotten legacies: Effectively managing watersheds in the contemporary age of unknown unknowns. Hydrological Processes, 2017, 31, 2802-2808.	1.1	9
53	An Assessment of Mean Areal Precipitation Methods on Simulated Stream Flow: A SWAT Model Performance Assessment. Water (Switzerland), 2017, 9, 459.	1.2	13
54	Challenges in Aquatic Physical Habitat Assessment: Improving Conservation and Restoration Decisions for Contemporary Watersheds. Challenges, 2017, 8, 31.	0.9	9

#	Article	IF	CITATIONS
55	Advancing Understanding of the Surface Water Quality Regime of Contemporary Mixed-Land-Use Watersheds: An Application of the Experimental Watershed Method. Hydrology, 2017, 4, 31.	1.3	13
56	Agricultural and forested land use impacts on floodplain shallow groundwater temperature regime. Hydrological Processes, 2016, 30, 625-636.	1.1	8
57	Quantifying and modelling urban stream temperature: a central US watershed study. Hydrological Processes, 2016, 30, 503-514.	1.1	20
58	Recent Afforestation in the Iowa River and Vorskla River Basins: A Comparative Trends Analysis. Forests, 2016, 7, 278.	0.9	4
59	A Rapid Physical Habitat Assessment of Wadeable Streams for Mixed-Land-Use Watersheds. Hydrology, 2016, 3, 37.	1.3	9
60	Ground truthed performance of singleâ€and dualâ€polarized radar rain rates at large ranges. Hydrological Processes, 2016, 30, 3692-3703.	1.1	4
61	Nested‣cale Nutrient Flux in a Mixedâ€Landâ€Use Urbanizing Watershed. Hydrological Processes, 2016, 30, 1475-1490.	1.1	24
62	Forecasting streamflow response to increased imperviousness in an urbanizing Midwestern watershed using a coupled modeling approach. Applied Geography, 2016, 72, 14-25.	1.7	21
63	Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design. Science of the Total Environment, 2016, 542, 315-323.	3.9	32
64	Spatial trends of precipitation chemistry in the Central Plains region of the United States. Environmental Earth Sciences, 2016, 75, 1.	1.3	0
65	A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. Science of the Total Environment, 2016, 572, 232-243.	3.9	59
66	Continuous and event-based time series analysis of observed floodplain groundwater flow under contrasting land-use types. Science of the Total Environment, 2016, 566-567, 436-445.	3.9	12
67	Reconsidering meteorological seasons in a changing climate. Climatic Change, 2016, 137, 511-524.	1.7	16
68	Using macroinvertebrate assemblages and multiple stressors to infer urban stream system condition: a case study in the central US. Urban Ecosystems, 2016, 19, 679-704.	1.1	25
69	More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest. Science of the Total Environment, 2016, 566-567, 463-467.	3.9	62
70	A comparison of the spatial distribution of vadose zone water in forested and agricultural floodplains a century after harvest. Science of the Total Environment, 2016, 542, 153-161.	3.9	21
71	Forest Canopy Reduction and Snowpack Dynamics in a Northern Idaho Watershed of the Continental-Maritime Region, United States. Forest Science, 2015, 61, 882-894.	0.5	17
72	Urban Stormwater Temperature Surges: A Central US Watershed Study. Hydrology, 2015, 2, 193-209.	1.3	27

#	Article	IF	CITATIONS
73	Structure and composition of an oak-hickory forest after over 60 years of repeated prescribed burning in Missouri, U.S.A. Forest Ecology and Management, 2015, 344, 95-109.	1.4	69
74	A comparison of forest and agricultural shallow groundwater chemical status a century after land use change. Science of the Total Environment, 2015, 529, 82-90.	3.9	21
75	Stream and shallow groundwater nutrient concentrations in an Ozark forested riparian zone of the central USA. Environmental Earth Sciences, 2015, 73, 6577-6590.	1.3	7
76	Forested and agricultural land use impacts on subsurface floodplain storage capacity using coupled vadose zone-saturated zone modeling. Environmental Earth Sciences, 2015, 74, 7215-7228.	1.3	16
77	Localized Climate and Surface Energy Flux Alterations across an Urban Gradient in the Central U.S Energies, 2014, 7, 1770-1791.	1.6	32
78	Imperviousness Change Analysis Tool (I-CAT) for simulating pixel-level urban growth. Landscape and Urban Planning, 2014, 124, 104-108.	3.4	24
79	A case study considering the comparability of mass and volumetric suspended sediment data. Environmental Earth Sciences, 2014, 71, 4051-4060.	1.3	16
80	Validation and sensitivity test of the distributed hydrology soil-vegetation model (DHSVM) in a forested mountain watershed. Hydrological Processes, 2014, 28, 6196-6210.	1.1	49
81	Interdisciplinary linkages of biophysical processes and resilience theory: Pursuing predictability. Ecological Modelling, 2013, 248, 1-10.	1.2	18
82	An improved hemispherical photography model for stream surface shortwave radiation estimations in a central U.S. hardwood forest. Hydrological Processes, 2013, 27, 3885-3895.	1.1	11
83	Considering Streamflow Trend Analyses Uncertainty in Urbanizing Watersheds: A Baseflow Case Study in the Central United States. Earth Interactions, 2013, 17, 1-28.	0.7	40
84	Seasonal and among-site variation in the occurrence and abundance of fleas on California ground squirrels (Otospermophilus beecheyi). Journal of Vector Ecology, 2011, 36, 117-123.	0.5	16
85	NOTE: Empirical estimation of non-chlorophyll light attenuation in Missouri reservoirs using deviation from the maximum observed value in the Secchi-Chlorophyll relationship. Lake and Reservoir Management, 2011, 27, 1-5.	0.4	17
86	Cold air drainage and modeled nocturnal leaf water potential in complex forested terrain. Tree Physiology, 2007, 27, 631-639.	1.4	40