List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2540786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Serum Analyte Profiles Associated With Crohn's Disease and Disease Location. Inflammatory Bowel Diseases, 2022, 28, 9-20.	0.9	10
2	Helios is a marker, not a driver, of human Treg stability. European Journal of Immunology, 2022, 52, 75-84.	1.6	35
3	A phase 1b open-label dose-finding study of ustekinumab in young adults with type 1 diabetes. Immunotherapy Advances, 2022, 2, Itab022.	1.2	5
4	Emerging strategies for treating autoimmune disorders with genetically modified Treg cells. Journal of Allergy and Clinical Immunology, 2022, 149, 1-11.	1.5	21
5	Guidelines for standardizing Tâ€cell cytometry assays to link biomarkers, mechanisms, and disease outcomes in type 1 diabetes. European Journal of Immunology, 2022, 52, 372-388.	1.6	10
6	The Women of FOCIS: Promoting Equality and Inclusiveness in a Professional Federation of Clinical Immunology Societies. Frontiers in Immunology, 2022, 13, 816535.	2.2	0
7	PTEN is required for human Treg suppression of costimulation in vitro. European Journal of Immunology, 2022, 52, 1482-1497.	1.6	6
8	Recurrent Clostridioides difficile Infection Is Associated With Impaired T Helper Type 17 Immunity to C difficile Toxin B. Gastroenterology, 2021, 160, 1410-1413.e4.	0.6	10
9	A method for expansion and retroviral transduction of mouse regulatory T cells. Journal of Immunological Methods, 2021, 488, 112931.	0.6	13
10	Cross talk between human regulatory T cells and antigenâ€presenting cells: Lessons for clinical applications. European Journal of Immunology, 2021, 51, 27-38.	1.6	17
11	Transduction of Human T Cell Subsets with Lentivirus. Methods in Molecular Biology, 2021, 2285, 227-254.	0.4	5
12	Novel T regulatory cells come of age: The curious incident of a mouse in Tennessee, delayed thymectomy and chimeric receptors!. Cellular Immunology, 2021, 359, 104253.	1.4	1
13	Identifying the †Achilles heel' of type 1 diabetes. Clinical and Experimental Immunology, 2021, 204, 167-178.	1.1	3
14	mRNA vaccines take on immune tolerance. Nature Biotechnology, 2021, 39, 419-421.	9.4	15
15	Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection Enhances Adaptive Immunity to C difficile Toxin B. Gastroenterology, 2021, 160, 2155-2158.e4.	0.6	12
16	Induction of stable human FOXP3 ⁺ Tregs by a parasiteâ€derived TGFâ€Î² mimic. Immunology and Cell Biology, 2021, 99, 833-847.	1.0	17
17	The parasite cytokine mimic <i>Hp</i> â€TGM potently replicates the regulatory effects of TGFâ€Î² on murine CD4 ⁺ T cells. Immunology and Cell Biology, 2021, 99, 848-864.	1.0	17
18	Prevention of vascular-allograft rejection by protecting the endothelial glycocalyx with immunosuppressive polymers. Nature Biomedical Engineering, 2021, 5, 1202-1216.	11.6	12

#	Article	IF	CITATIONS
19	Optimized CRISPR-mediated gene knockin reveals FOXP3-independent maintenance of human Treg identity. Cell Reports, 2021, 36, 109494.	2.9	29
20	Interactions between islets and regulatory immune cells in health and type 1 diabetes. Diabetologia, 2021, 64, 2378-2388.	2.9	5
21	Suppression of Human Dendritic Cells by Regulatory T Cells. Bio-protocol, 2021, 11, e4217.	0.2	2
22	Lasting Changes to Circulating Leukocytes in People with Mild SARS-CoV-2 Infections. Viruses, 2021, 13, 2239.	1.5	10
23	Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes. Cell Stem Cell, 2021, 28, 2047-2061.e5.	5.2	149
24	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	1.6	198
25	Ectopic germline recombination activity of the widely used Foxp3‥FPâ€Cre mouse: a case report. Immunology, 2020, 159, 231-241.	2.0	14
26	Analysis of Flagellin-Specific Adaptive Immunity Reveals Links to Dysbiosis in Patients With Inflammatory Bowel Disease. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 485-506.	2.3	22
27	What is the Optimal Design-Build-Test Cycle for Clinically Relevant Synthetic CAR T Cell Therapies?. Cell Systems, 2020, 11, 212-214.	2.9	Ο
28	Building a CAR-Treg: Going from the basic to the luxury model. Cellular Immunology, 2020, 358, 104220.	1.4	47
29	T-Cell Specificity Matters in IBD: Impaired IL10 Production Revealed by OmpC-Tetramers. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 647-648.	2.3	1
30	T reg–specific insulin receptor deletion prevents diet-induced and age-associated metabolic syndrome. Journal of Experimental Medicine, 2020, 217, .	4.2	32
31	Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Science Translational Medicine, 2020, 12, .	5.8	89
32	Pharmacological inhibition of RORC2 enhances human Th17â€Treg stability and function. European Journal of Immunology, 2020, 50, 1400-1411.	1.6	14
33	Donor-specific chimeric antigen receptor Tregs limit rejection in naive but not sensitized allograft recipients. American Journal of Transplantation, 2020, 20, 1562-1573.	2.6	67
34	Tailoring the homing capacity of human Tregs for directed migration to sites of Th1-inflammation or intestinal regions. American Journal of Transplantation, 2019, 19, 62-76.	2.6	57
35	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
36	Suppressive and Gut-Reparative Functions of Human Type 1 T Regulatory Cells. Gastroenterology, 2019, 157, 1584-1598.	0.6	81

#	Article	IF	CITATIONS
37	A New Mechanism of Action in Human and Mouse Treg Cells: The Ke(y)to Suppression. Immunity, 2019, 50, 1122-1124.	6.6	4
38	Innate Control of Tissue-Reparative Human Regulatory T Cells. Journal of Immunology, 2019, 202, 2195-2209.	0.4	35
39	Methods to manufacture regulatory T cells for cell therapy. Clinical and Experimental Immunology, 2019, 197, 52-63.	1.1	76
40	Cancer immunotherapies repurposed for use in autoimmunity. Nature Biomedical Engineering, 2019, 3, 259-263.	11.6	28
41	Evaluating the role of Tregs in the progression of multiple myeloma. Leukemia and Lymphoma, 2019, 60, 2134-2142.	0.6	20
42	Cryopreservation timing is a critical process parameter in a thymic regulatory T-cell therapy manufacturing protocol. Cytotherapy, 2019, 21, 1216-1233.	0.3	18
43	Characterization of regulatory T cells in obese omental adipose tissue in humans. European Journal of Immunology, 2019, 49, 336-347.	1.6	35
44	Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in T regulatory cells. JCI Insight, 2019, 4, .	2.3	58
45	Treg gene signatures predict and measure type 1 diabetes trajectory. JCl Insight, 2019, 4, .	2.3	18
46	A composite immune signature parallels disease progression across T1D subjects. JCI Insight, 2019, 4, .	2.3	15
47	CD4+ T Regulatory Cells and Modulation of Undesired Immune Responses. , 2019, , 148-154.		0
48	An optimized method to measure human FOXP3 ⁺ regulatory TÂcells from multiple tissue types using mass cytometry. European Journal of Immunology, 2018, 48, 1415-1419.	1.6	7
49	Engineering therapeutic T cells to suppress alloimmune responses using TCRs, CARs, or BARs. American Journal of Transplantation, 2018, 18, 1305-1311.	2.6	17
50	Regulatory T-cells drive immune dysfunction in CLL. Leukemia and Lymphoma, 2018, 59, 486-489.	0.6	15
51	Guiding regulatory T cells to the allograft. Current Opinion in Organ Transplantation, 2018, 23, 106-113.	0.8	22
52	The outstanding questions in transplantation: It's about time…. American Journal of Transplantation, 2018, 18, 271-272.	2.6	3
53	Taking regulatory T-cell therapy one step further. Current Opinion in Organ Transplantation, 2018, 23, 509-515.	0.8	14
54	Human Regulatory T Cell Potential for Tissue Repair Via IL-33/ST2 and Amphiregulin. Transplantation, 2018, 102, S331.	0.5	1

#	Article	IF	CITATIONS
55	"First-In-Human―Clinical Trial Employing Adoptive Transfer of Autologous Thymus-Derived Treg Cells (thyTreg) to Prevent Graft Rejection in Heart-Transplanted Children. Transplantation, 2018, 102, S205.	0.5	7
56	Humanization and Pre-Clinical Validation of an Anti-HLA-A*02. Transplantation, 2018, 102, S233.	0.5	0
57	Megadose Bone Marrow and Regulatory T cells for the Induction of Immune Tolerance in Non-Human Primates Through Durable Mixed Hematopoietic Chimerism Across MHC-barriers. Transplantation, 2018, 102, S263-S264.	0.5	0
58	A standardized immune phenotyping and automated data analysis platform for multicenter biomarker studies. JCI Insight, 2018, 3, .	2.3	29
59	Harnessing Advances in T Regulatory Cell Biology for Cellular Therapy in Transplantation. Transplantation, 2017, 101, 2277-2287.	0.5	37
60	Evaluating the Role of Tregs in the Progression of Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, e42-e43.	0.2	0
61	A Novel Whole Blood Assay Detects Flagellin-Specific CD4 + T Cells in Patients with Inflammatory Bowel Disease. Gastroenterology, 2017, 152, S615.	0.6	0
62	Circulating gluten-specific FOXP3 + CD39 + regulatory T cells have impaired suppressive function in patients with celiac disease. Journal of Allergy and Clinical Immunology, 2017, 140, 1592-1603.e8.	1.5	63
63	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
64	CD56 ^{bright} natural killer regulatory cells in filgrastim primed donor blood or marrow products regulate chronic graft- <i>versus</i> -host disease: the Canadian Blood and Marrow Transplant Group randomized 0601 study results. Haematologica, 2017, 102, 1936-1946.	1.7	20
65	Biomarker-guided stratification of autoimmune patients for biologic therapy. Current Opinion in Immunology, 2017, 49, 56-63.	2.4	7
66	Adiposeâ€ŧissue regulatory T cells: Critical players in adiposeâ€immune crosstalk. European Journal of Immunology, 2017, 47, 1867-1874.	1.6	47
67	Development of GMP-Compatible Protocols for Thymus-Derived Regulatory T Cell Expansion. Transplantation, 2017, 101, S9.	0.5	0
68	Thymus-Derived Treg Infusion to Prevent Graft Rejection in Heart-Transplanted Children. Transplantation, 2017, 101, S36.	0.5	1
69	Migration Capacity of Thymic Regulatory T Cells can be Tuned by Expansion in Cytokine-Enriched Culture Conditions. Transplantation, 2017, 101, S37.	0.5	0
70	Standardized Immunophenotyping in the Canadian National Transplant Research Program. Transplantation, 2017, 101, S62.	0.5	0
71	Antigen-specific regulatory T cells: are police CARs the answer?. Translational Research, 2017, 187, 53-58.	2.2	39
72	Thymic progenitors of TCR $$ ± $$ ² + CD8 $$ ± $$ ± intestinal intraepithelial lymphocytes require RasGRP1 for development lournal of Experimental Medicine, 2017, 214, 2421-2435	4.2	26

#	Article	IF	CITATIONS
73	Effect of Ex Vivo–Expanded Recipient Regulatory T Cells on Hematopoietic Chimerism and Kidney Allograft Tolerance Across MHC Barriers in Cynomolgus Macaques. Transplantation, 2017, 101, 274-283.	0.5	61
74	Engineered Tolerance: Tailoring Development, Function, and Antigen-Specificity of Regulatory T Cells. Frontiers in Immunology, 2017, 8, 1460.	2.2	50
75	CD4+ T Cells Specific for C.Âdifficile Toxins are a Marker of Patients with Active Relapsing Disease. Open Forum Infectious Diseases, 2017, 4, S383-S383.	0.4	0
76	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	2.2	43
77	Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. Journal of Clinical Investigation, 2016, 126, 1413-1424.	3.9	355
78	How antigen specificity directs regulatory Tâ€cell function: self, foreign and engineered specificity. Hla, 2016, 88, 3-13.	0.4	31
79	Discarded Human Thymus Is a Novel Source of Stable and Long-Lived Therapeutic Regulatory T Cells. American Journal of Transplantation, 2016, 16, 58-71.	2.6	84
80	Obesity-Associated Adipose Tissue Inflammation and Transplantation. American Journal of Transplantation, 2016, 16, 743-750.	2.6	22
81	Filgrastim-Stimulated Bone Marrow Compared with Filgrastim-Mobilized Peripheral Blood in Myeloablative Sibling Allografting for Patients with Hematologic Malignancies: A Randomized Canadian Blood and Marrow Transplant Group Study. Biology of Blood and Marrow Transplantation, 2016. 22. 1410-1415.	2.0	22
82	The role of FOXP3 in autoimmunity. Current Opinion in Immunology, 2016, 43, 16-23.	2.4	25
83	Heterogeneity of chronic graft-versus-host disease biomarkers: association with CXCL10 and CXCR3+ NK cells. Blood, 2016, 127, 3082-3091.	0.6	83
84	A Regulatory T-Cell Gene Signature Is a Specific and Sensitive Biomarker to Identify Children With New-Onset Type 1 Diabetes. Diabetes, 2016, 65, 1031-1039.	0.3	59
85	T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression. Journal of Clinical Investigation, 2016, 126, 1039-1051.	3.9	71
86	Phenotype, Function and Expansion of Regulatory T Cells in the Cynomolgus Macaque (Macaca) Tj ETQq0 0 0	rgBT /Overlc	ock_10 Tf 50 2
87	CCL22 Prevents Rejection of Mouse Islet Allografts and Induces Donor-Specific Tolerance. Cell Transplantation, 2015, 24, 2143-2154.	1.2	28
88	Restimulation After Cryopreservation and Thawing Preserves the Phenotype and Function of Expanded Baboon Regulatory T Cells. Transplantation Direct, 2015, 1, 1-7.	0.8	13
89	Tr1 Cells, but Not Foxp3+ Regulatory T Cells, Suppress NLRP3 Inflammasome Activation via an IL-10–Dependent Mechanism. Journal of Immunology, 2015, 195, 488-497.	0.4	96
90	Induction of Durable Mixed Hematopoietic Chimerism and Immune Tolerance in Monkeys. Biology of Blood and Marrow Transplantation, 2015, 21, S46-S47.	2.0	0

#	Article	IF	CITATIONS
91	Control of tissueâ€localized immune responses by human regulatory T cells. European Journal of Immunology, 2015, 45, 333-343.	1.6	58
92	Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis. Journal of Allergy and Clinical Immunology, 2015, 135, 946-955.e9.	1.5	131
93	The Environment of Regulatory T Cell Biology: Cytokines, Metabolites, and the Microbiome. Frontiers in Immunology, 2015, 6, 61.	2.2	116
94	IL-33 Reverses an Obesity-Induced Deficit in Visceral Adipose Tissue ST2+ T Regulatory Cells and Ameliorates Adipose Tissue Inflammation and Insulin Resistance. Journal of Immunology, 2015, 194, 4777-4783.	0.4	146
95	Insulin Inhibits IL-10–Mediated Regulatory T Cell Function: Implications for Obesity. Journal of Immunology, 2014, 192, 623-629.	0.4	130
96	The Role of FOXP3 in Regulating Immune Responses. International Reviews of Immunology, 2014, 33, 110-128.	1.5	33
97	Methyltransferase G9A regulates T cell differentiation during murine intestinal inflammation. Journal of Clinical Investigation, 2014, 124, 1945-1955.	3.9	81
98	Pediatric thymic tissue as a source of CD25+FOXP3+ regulatory T cells (Tregs) for cellular therapy. Cytotherapy, 2013, 15, S42.	0.3	0
99	Immune Regulation in Obesity-Associated Adipose Inflammation. Journal of Immunology, 2013, 191, 527-532.	0.4	118
100	Response to Comment on "Helios+ and Heliosâ^' Cells Coexist within the Natural FOXP3+ T Regulatory Cell Subset in Humans― Journal of Immunology, 2013, 190, 4440-4441.	0.4	11
101	Autologous transplant for autoimmune disease: optimizing the regulatory T cells. Cytotherapy, 2013, 15, S42-S43.	0.3	0
102	A novel function for FOXP3 in humans: intrinsic regulation of conventional T cells. Blood, 2013, 121, 1265-1275.	0.6	73
103	In Vitro Generation of Human T Regulatory Cells: Generation, Culture, and Analysis of FOXP3-Transduced T Cells. Methods in Molecular Biology, 2013, 946, 115-132.	0.4	6
104	Helios+ and Heliosâ^' Cells Coexist within the Natural FOXP3+ T Regulatory Cell Subset in Humans. Journal of Immunology, 2013, 190, 2001-2008.	0.4	189
105	Active vitamin D (1,25-dihydroxyvitamin D ₃) increases host susceptibility to <i>Citrobacter rodentium</i> by suppressing mucosal Th17 responses. American Journal of Physiology - Renal Physiology, 2012, 303, G1299-G1311.	1.6	75
106	TH17 Cells in Autoimmunity and Immunodeficiency: Protective or Pathogenic?. Frontiers in Immunology, 2012, 3, 129.	2.2	102
107	T regulatory cell therapy in transplantation. Current Opinion in Organ Transplantation, 2012, 17, 343-348.	0.8	22
108	Inflammation-Driven Reprogramming of CD4+Foxp3+ Regulatory T Cells into Pathogenic Th1/Th17 T Effectors Is Abrogated by mTOR Inhibition in vivo. PLoS ONE, 2012, 7, e35572.	1.1	100

#	Article	IF	CITATIONS
109	<scp>ATP</scp> conditions intestinal epithelial cells to an inflammatory state that promotes components of <scp>DC</scp> maturation. European Journal of Immunology, 2012, 42, 3310-3321.	1.6	20
110	Chemokine Induced Tolerance in Mouse Islet Allografts. Canadian Journal of Diabetes, 2012, 36, S76.	0.4	0
111	Transcriptome Analysis Reveals Markers of Aberrantly Activated Innate Immunity in Vitiligo Lesional and Non-Lesional Skin. PLoS ONE, 2012, 7, e51040.	1.1	83
112	The Role of the PI3K Signaling Pathway in CD4+ T Cell Differentiation and Function. Frontiers in Immunology, 2012, 3, 245.	2.2	88
113	Regulatory Tâ€cell therapy for inflammatory bowel disease: more questions than answers. Immunology, 2012, 136, 115-122.	2.0	111
114	Suppression assays with human T regulatory cells: A technical guide. European Journal of Immunology, 2012, 42, 27-34.	1.6	118
115	Toll-like receptor 5 deficiency protects from wasting disease in a T cell transfer colitis model in T cell receptor-β-deficient mice. Inflammatory Bowel Diseases, 2012, 18, 85-93.	0.9	12
116	Cellular magnetic resonance imaging of monocyte-derived dendritic cell migration from healthy donors and cancer patients as assessed in a scid mouse model. Cytotherapy, 2011, 13, 1234-1248.	0.3	26
117	Environmental influences on T regulatory cells in inflammatory bowel disease. Seminars in Immunology, 2011, 23, 130-138.	2.7	35
118	Moving to tolerance: Clinical application of T regulatory cells. Seminars in Immunology, 2011, 23, 304-313.	2.7	92
119	SHIP-Deficient Dendritic Cells, Unlike Wild Type Dendritic Cells, Suppress T Cell Proliferation via a Nitric Oxide-Independent Mechanism. PLoS ONE, 2011, 6, e21893.	1.1	7
120	Adenoviral-transduced dendritic cells are susceptible to suppression by T regulatory cells and promote interleukin 17 production. Cancer Immunology, Immunotherapy, 2011, 60, 381-388.	2.0	3
121	Human CD4 ⁺ FOXP3 ⁺ regulatory T cells produce CXCL8 and recruit neutrophils. European Journal of Immunology, 2011, 41, 306-312.	1.6	71
122	CD4 ⁺ Foxp3 ⁺ regulatory T cells suppress γδTâ€cell effector functions in a model of Tâ€cellâ€induced mucosal inflammation. European Journal of Immunology, 2011, 41, 3455-3466.	1.6	25
123	The Stress signal extracellular ATP modulates antiflagellin immune responses in intestinal epithelial cells. Inflammatory Bowel Diseases, 2011, 17, 319-333.	0.9	23
124	Human Th1 and Th17 Cells Exhibit Epigenetic Stability at Signature Cytokine and Transcription Factor Loci. Journal of Immunology, 2011, 187, 5615-5626.	0.4	109
125	Cutting Edge: PHLPP Regulates the Development, Function, and Molecular Signaling Pathways of Regulatory T Cells. Journal of Immunology, 2011, 186, 5533-5537.	0.4	63
126	Prevention of murine autoimmune diabetes by CCL22-mediated Treg recruitment to the pancreatic islets. Journal of Clinical Investigation, 2011, 121, 3024-3028.	3.9	90

#	Article	IF	CITATIONS
127	T Regulatory Cells and Cancer Immunotherapy. , 2011, , 207-228.		0
128	Cutaneous GVHD is associated with the expansion of tissue-localized Th1 and not Th17 cells. Blood, 2010, 116, 5748-5751.	0.6	70
129	Deconvolution and chromatic aberration corrections in quantifying colocalization of a transcription factor in three-dimensional cellular space. Micron, 2010, 41, 633-640.	1.1	9
130	TLR5 is not required for flagellin-mediated exacerbation of DSS colitis. Inflammatory Bowel Diseases, 2010, 16, 401-409.	0.9	27
131	CD161 is a marker of all human ILâ€17â€producing Tâ€cell subsets and is induced by RORC. European Journal of Immunology, 2010, 40, 2174-2181.	1.6	333
132	Natural killer T cells constitutively expressing the interleukinâ€2 receptor α chain early in life are primed to respond to lower antigenic stimulation. Immunology, 2010, 131, 289-299.	2.0	15
133	Inflammatory Effects of Ex Vivo Human Th17 Cells Are Suppressed by Regulatory T Cells. Journal of Immunology, 2010, 185, 3199-3208.	0.4	74
134	Cutting Edge: Increased IL-17–Secreting T Cells in Children with New-Onset Type 1 Diabetes. Journal of Immunology, 2010, 185, 3814-3818.	0.4	190
135	Leishmania Exosomes Modulate Innate and Adaptive Immune Responses through Effects on Monocytes and Dendritic Cells. Journal of Immunology, 2010, 185, 5011-5022.	0.4	273
136	Point mutants of forkhead box P3 that cause immune dysregulation, polyendocrinopathy, enteropathy, X-linked have diverse abilities to reprogram T cells into regulatory T cells. Journal of Allergy and Clinical Immunology, 2010, 126, 1242-1251.	1.5	48
137	SHIP Regulates the Reciprocal Development of T Regulatory and Th17 Cells. Journal of Immunology, 2009, 183, 975-983.	0.4	67
138	MASTering Treg Function to Promote Tolerance. American Journal of Transplantation, 2009, 9, 2209-2210.	2.6	2
139	The role of retinoic acidâ€related orphan receptor variant 2 and ILâ€17 in the development and function of human CD4 ⁺ T cells. European Journal of Immunology, 2009, 39, 1480-1493.	1.6	65
140	Quantifying colocalization of a conditionally active transcription factor FOXP3 in three-dimensional cellular space. Proceedings of SPIE, 2009, , .	0.8	0
141	ATG-induced expression of FOXP3 in human CD4+ T cells in vitro is associated with T-cell activation and not the induction of FOXP3+ T regulatory cells. Blood, 2009, 114, 5003-5006.	0.6	53
142	Wild-type FOXP3 is selectively active in CD4+CD25hi regulatory T cells of healthy female carriers of different FOXP3 mutations. Blood, 2009, 114, 4138-4141.	0.6	49
143	Translational Mini-Review Series on Th17 Cells: Function and regulation of human T helper 17 cells in health and disease. Clinical and Experimental Immunology, 2009, 159, 109-119.	1.1	227
144	Molecular Regulation of Cellular Immunity by FOXP3. Advances in Experimental Medicine and Biology, 2009, , 30-45.	0.8	16

#	Article	IF	CITATIONS
145	Molecular regulation of cellular immunity by FOXP3. Advances in Experimental Medicine and Biology, 2009, 665, 30-46.	0.8	5
146	Proâ€ŧolerogenic effects of photodynamic therapy with TH9402 on dendritic cells. Journal of Clinical Apheresis, 2008, 23, 82-91.	0.7	14
147	Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3. European Journal of Immunology, 2008, 38, 3282-3289.	1.6	91
148	CD4 ⁺ Tâ€regulatory cells: toward therapy for human diseases. Immunological Reviews, 2008, 223, 391-421.	2.8	213
149	Graft-versus-host disease: suppression by statins. Nature Medicine, 2008, 14, 1155-1156.	15.2	46
150	The role of Tâ€regulatory cells and Tollâ€like receptors in the pathogenesis of human inflammatory bowel disease. Immunology, 2008, 125, 145-153.	2.0	129
151	STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25â^' effector T cells. International Immunology, 2008, 20, 421-431.	1.8	166
152	Generation of Potent and Stable Human CD4+ T Regulatory Cells by Activation-independent Expression of FOXP3. Molecular Therapy, 2008, 16, 194-202.	3.7	206
153	Molecular Signalling in T Regulatory Cells. , 2008, , 135-152.		0
154	Development of a Modified Skin Explant Assay to Study Treg Suppression of Th17 Cell Mediated GvHD in the Skin. Blood, 2008, 112, 5434-5434.	0.6	0
155	Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. International Immunology, 2007, 19, 345-354.	1.8	756
156	Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood, 2007, 109, 2014-2022.	0.6	196
157	Flow cytometry-based methods for studying signaling in human CD4+CD25+FOXP3+ T regulatory cells. Journal of Immunological Methods, 2007, 324, 92-104.	0.6	26
158	Isolation, Expansion, and Characterization of Human Natural and Adaptive Regulatory T Cells. Methods in Molecular Biology, 2007, 380, 83-105.	0.4	36
159	Functional Dynamics of Naturally Occurring Regulatory T Cells in Health and Autoimmunity. Advances in Immunology, 2006, 92, 119-155.	1.1	50
160	Interleukinâ€10â€secreting type 1 regulatory T cells in rodents and humans. Immunological Reviews, 2006, 212, 28-50.	2.8	1,071
161	Gliadin-Specific Type 1 Regulatory T Cells from the Intestinal Mucosa of Treated Celiac Patients Inhibit Pathogenic T Cells. Journal of Immunology, 2006, 177, 4178-4186.	0.4	119
162	Defective regulatory and effector T cell functions in patients with FOXP3 mutations. Journal of Clinical Investigation, 2006, 116, 1713-1722.	3.9	462

#	Article	IF	CITATIONS
163	Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood, 2005, 105, 1162-1169.	0.6	435
164	Recombinant human interleukin 10 suppresses gliadin dependent T cell activation in ex vivo cultured coeliac intestinal mucosa. Gut, 2005, 54, 46-53.	6.1	115
165	Phenotypic and Functional Differences Between Human CD4+CD25+ and Type 1 Regulatory T Cells. , 2005, 293, 303-326.		68
166	Human CD4+ T Cells Express TLR5 and Its Ligand Flagellin Enhances the Suppressive Capacity and Expression of FOXP3 in CD4+CD25+ T Regulatory Cells. Journal of Immunology, 2005, 175, 8051-8059.	0.4	325
167	The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. Journal of Clinical Investigation, 2005, 115, 3276-3284.	3.9	386
168	Discoveries in sphingolipid metabolism, spinocerebellar ataxia and autoimmune disease. Clinical Genetics, 2003, 64, 1-3.	1.0	0
169	Can we throw the master-switch in autoimmune disease?. Clinical Genetics, 2003, 64, 5-6.	1.0	0
170	Human CD25+CD4+ T Suppressor Cell Clones Produce Transforming Growth Factor Î ² , but not Interleukin 10, and Are Distinct from Type 1 T Regulatory Cells. Journal of Experimental Medicine, 2002, 196, 1335-1346.	4.2	407
171	The Role of IL-10 and TGF-β in the Differentiation and Effector Function of T Regulatory Cells. International Archives of Allergy and Immunology, 2002, 129, 263-276.	0.9	351
172	Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. European Journal of Immunology, 2002, 32, 2237.	1.6	180
173	Type 1 T regulatory cells. Immunological Reviews, 2001, 182, 68-79.	2.8	745
174	Human Cd25+Cd4+ T Regulatory Cells Suppress Naive and Memory T Cell Proliferation and Can Be Expanded in Vitro without Loss of Function. Journal of Experimental Medicine, 2001, 193, 1295-1302.	4.2	903
175	Differentiation of T Regulatory Cells by Immature Dendritic Cells. Journal of Experimental Medicine, 2001, 193, F5-F10.	4.2	448
176	IFN-α and IL-10 Induce the Differentiation of Human Type 1 T Regulatory Cells. Journal of Immunology, 2001, 166, 5530-5539.	0.4	558
177	The role of different subsets of T regulatory cells in controlling autoimmunity. Current Opinion in Immunology, 2000, 12, 676-683.	2.4	288
178	T-regulatory 1 cells: A novel subset of CD4+ T cells with immunoregulatory properties. Journal of Allergy and Clinical Immunology, 2000, 106, S109-S112.	1.5	149
179	Interleukin-4 Synergizes With Raf-1 to Promote Long-Term Proliferation and Activation of c-jun N-terminal Kinase. Blood, 1999, 93, 3694-3702.	0.6	14
180	Heterodimerization of the  and β Chains of the Interleukin-3 (IL-3) Receptor Is Necessary and Sufficient for IL-3–Induced Mitogenesis. Blood, 1999, 94, 1614-1622.	0.6	16

#	Article	IF	CITATIONS
181	Heterodimerization of the  and β Chains of the Interleukin-3 (IL-3) Receptor Is Necessary and Sufficient for IL-3–Induced Mitogenesis. Blood, 1999, 94, 1614-1622.	0.6	8
182	IL-4 inhibits the production of TNF-alpha and IL-12 by STAT6-dependent and -independent mechanisms. Journal of Immunology, 1999, 162, 5224-9.	0.4	80
183	Interleukin-4 synergizes with Raf-1 to promote long-term proliferation and activation of c-jun N-terminal kinase. Blood, 1999, 93, 3694-702.	0.6	3
184	Heterodimerization of the alpha and beta chains of the interleukin-3 (IL-3) receptor is necessary and sufficient for IL-3-induced mitogenesis. Blood, 1999, 94, 1614-22.	0.6	1
185	Insulin Receptor Substrate-2 Is the Major 170-kDa Protein Phosphorylated on Tyrosine in Response to Cytokines in Murine Lymphohemopoietic Cells. Journal of Biological Chemistry, 1997, 272, 1377-1381.	1.6	61
186	Isolation, Expansion, and Characterization of Human Natural and Adaptive Regulatory T Cells. , 0, , 83-106.		1