
Zhiming Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2540705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. Journal of Materials Chemistry, 2012, 22, 8764.	6.7	546
2	Mesoporous Titanium Nitrideâ€Enabled Highly Stable Lithium‣ulfur Batteries. Advanced Materials, 2016, 28, 6926-6931.	11.1	544
3	Photocatalytic CO ₂ Reduction by Carbon-Coated Indium-Oxide Nanobelts. Journal of the American Chemical Society, 2017, 139, 4123-4129.	6.6	434
4	Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. Journal of the American Chemical Society, 2018, 140, 6448-6455.	6.6	427
5	Ni ₃ Feâ€N Doped Carbon Sheets as a Bifunctional Electrocatalyst for Air Cathodes. Advanced Energy Materials, 2017, 7, 1601172.	10.2	369
6	Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes. Nano Letters, 2016, 16, 6516-6522.	4.5	241
7	Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13313-13317.	3.3	237
8	Na _{<i>x</i>} MV(PO ₄) ₃ (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction. Nano Letters, 2016, 16, 7836-7841.	4.5	229
9	Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy, 2017, 39, 77-85.	8.2	216
10	Synthesis of Structurally Ordered Pt ₃ Ti and Pt ₃ V Nanoparticles as Methanol Oxidation Catalysts. Journal of the American Chemical Society, 2014, 136, 10206-10209.	6.6	197
11	Atomic Feâ€Doped MOFâ€Derived Carbon Polyhedrons with High Activeâ€Center Density and Ultraâ€High Performance toward PEM Fuel Cells. Advanced Energy Materials, 2019, 9, 1802856.	10.2	196
12	Fluorineâ€Ðoped Antiperovskite Electrolyte for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 9965-9968.	7.2	192
13	Amylopectin Wrapped Graphene Oxide/Sulfur for Improved Cyclability of Lithium–Sulfur Battery. ACS Nano, 2013, 7, 8801-8808.	7.3	181
14	Ni ₃ FeNâ€6upported Fe ₃ Pt Intermetallic Nanoalloy as a Highâ€Performance Bifunctional Catalyst for Metal–Air Batteries. Angewandte Chemie - International Edition, 2017, 56, 9901-9905.	7.2	175
15	g-C ₃ N ₄ promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. Journal of Materials Chemistry A, 2019, 7, 5020-5030.	5.2	152
16	Enhanced Cycling Stability of Hybrid Li–Air Batteries Enabled by Ordered Pd ₃ Fe Intermetallic Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 7278-7281.	6.6	149
17	High-Performance Pd ₃ Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction. Nano Letters, 2016, 16, 2560-2566.	4.5	144
18	Exceptional oxygen evolution reactivities on CaCoO ₃ and SrCoO ₃ . Science Advances, 2019, 5, eaav6262.	4.7	132

#	Article	IF	CITATIONS
19	Chitosan/heteropolyacid composite membranes for direct methanol fuel cell. Journal of Power Sources, 2009, 188, 24-29.	4.0	123
20	Cu(II) Ions Induced Structural Transformation of Cobalt Selenides for Remarkable Enhancement in Oxygen/Hydrogen Electrocatalysis. ACS Catalysis, 2019, 9, 10761-10772.	5.5	110
21	Polymer lithium-garnet interphase for an all-solid-state rechargeable battery. Nano Energy, 2018, 53, 926-931.	8.2	103
22	General Strategy for Synthesis of Ordered Pt ₃ M Intermetallics with Ultrasmall Particle Size. Angewandte Chemie - International Edition, 2020, 59, 7857-7863.	7.2	103
23	Nitrogen-Doped Perovskite as a Bifunctional Cathode Catalyst for Rechargeable Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5543-5550.	4.0	100
24	Structurally Ordered Fe ₃ Pt Nanoparticles on Robust Nitride Support as a High Performance Catalyst for the Oxygen Reduction Reaction. Advanced Energy Materials, 2019, 9, 1803040.	10.2	96
25	Polyelectrolyte complexes of chitosan and phosphotungstic acid as proton-conducting membranes for direct methanol fuel cells. Journal of Power Sources, 2007, 167, 94-99.	4.0	95
26	Structurally Ordered Pt ₃ Cr as Oxygen Reduction Electrocatalyst: Ordering Control and Origin of Enhanced Stability. Chemistry of Materials, 2015, 27, 7538-7545.	3.2	93
27	Surface confinement assisted synthesis of nitrogen-rich hollow carbon cages with Co nanoparticles as breathable electrodes for Zn-air batteries. Applied Catalysis B: Environmental, 2019, 254, 55-65.	10.8	92
28	Robust Fe ₃ Mo ₃ C Supported IrMn Clusters as Highly Efficient Bifunctional Air Electrode for Metal–Air Battery. Advanced Materials, 2017, 29, 1702385.	11.1	90
29	Pd nanoparticles supported on HPMo-PDDA-MWCNT and their activity for formic acid oxidation reaction of fuel cells. International Journal of Hydrogen Energy, 2011, 36, 8508-8517.	3.8	89
30	Mesoporous Ti _{0.5} Cr _{0.5} N Supported PdAg Nanoalloy as Highly Active and Stable Catalysts for the Electro-oxidation of Formic Acid and Methanol. ACS Nano, 2014, 8, 6106-6113.	7.3	87
31	In Situ Formation of Li ₃ P Layer Enables Fast Li ⁺ Conduction across Li/Solid Polymer Electrolyte Interface. Advanced Functional Materials, 2020, 30, 2000831.	7.8	78
32	PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. Physical Chemistry Chemical Physics, 2011, 13, 16349.	1.3	75
33	Construction of Ti4O7/TiN/carbon microdisk sulfur host with strong polar N–Ti–O bond for ultralong life lithium–sulfur battery. Energy Storage Materials, 2022, 44, 180-189.	9.5	74
34	Sulfonated poly(ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells. Journal of Power Sources, 2008, 185, 32-39.	4.0	73
35	UIOâ€66â€NH ₂ â€Derived Mesoporous Carbon Catalyst Coâ€Doped with Fe/N/S as Highly Efficient Cathode Catalyst for PEMFCs. Small, 2019, 15, e1803520.	5.2	73
36	In situ synthesized heteropoly acid/polyaniline/graphene nanocomposites to simultaneously boost both double layer- and pseudo-capacitance for supercapacitors. Physical Chemistry Chemical Physics, 2012, 14, 12823.	1.3	72

#	Article	IF	CITATIONS
37	Catalytic activities for methanol oxidation on ultrathin CuPt ₃ wavy nanowires with/without smart polymer. Chemical Science, 2016, 7, 5414-5420.	3.7	71
38	Highly active PtRu catalysts supported on carbon nanotubes prepared by modified impregnation method for methanol electro-oxidation. Electrochimica Acta, 2008, 53, 7807-7811.	2.6	70
39	Mesoporous titanium nitride supported Pt nanoparticles as high performance catalysts for methanol electrooxidation. Physical Chemistry Chemical Physics, 2013, 15, 1088-1092.	1.3	70
40	Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid. Journal of Colloid and Interface Science, 2019, 537, 366-374.	5.0	68
41	Sulfonated polyimides bearing benzimidazole groups for proton exchange membranes. Polymer, 2007, 48, 7255-7263.	1.8	66
42	High activity of Pd–WO3/C catalyst as anodic catalyst for direct formic acid fuel cell. Journal of Power Sources, 2011, 196, 2469-2474.	4.0	66
43	Mesoporous Ti _{0.5} Nb _{0.5} N Ternary Nitride as a Novel Noncarbon Support for Oxygen Reduction Reaction in Acid and Alkaline Electrolytes. Chemistry of Materials, 2013, 25, 3782-3784.	3.2	66
44	Naphthaleneâ€based poly(arylene ether ketone) copolymers containing sulfobutyl pendant groups for proton exchange membranes. Journal of Polymer Science Part A, 2009, 47, 5772-5783.	2.5	64
45	Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation. Journal of Power Sources, 2011, 196, 2621-2626.	4.0	63
46	Antiperovskite Nitrides CuNCo _{3–<i>x</i>} V _{<i>x</i>} : Highly Efficient and Durable Electrocatalysts for the Oxygen-Evolution Reaction. Nano Letters, 2019, 19, 7457-7463.	4.5	62
47	Synthesis and properties of novel polyimides from sulfonated binaphthalene dianhydride for proton exchange membranes. Journal of Polymer Science Part A, 2008, 46, 2820-2832.	2.5	59
48	Preparation and evaluation of a proton exchange membrane based on oxidation and water stable sulfonated polyimides. Journal of Power Sources, 2007, 172, 511-519.	4.0	58
49	Highly conductive, methanol resistant fuel cell membranes fabricated by layer-by-layer self-assembly of inorganic heteropolyacid. Journal of Power Sources, 2009, 194, 168-174.	4.0	58
50	Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 15822-15828.	5.2	58
51	Controllably self-assembled graphene-supported Au@Pt bimetallic nanodendrites as superior electrocatalysts for methanol oxidation in direct methanol fuel cells. Journal of Materials Chemistry A, 2016, 4, 7352-7364.	5.2	57
52	Highly dispersed MoOx on carbon nanotube as support for high performance Pt catalyst towards methanol oxidation. Chemical Communications, 2011, 47, 8418.	2.2	55
53	Experimental Synthesis and Properties of Metastable CuNbN ₂ and Theoretical Extension to Other Ternary Copper Nitrides. Chemistry of Materials, 2014, 26, 4970-4977.	3.2	55
54	DNAâ€Đirected Growth of Pd Nanocrystals on Carbon Nanotubes towards Efficient Oxygen Reduction Reactions. Chemistry - A European Journal, 2012, 18, 15693-15698.	1.7	51

#	Article	IF	CITATIONS
55	Novel sulfonated poly(arylene ether ketone) copolymers bearing carboxylic or benzimidazole pendant groups for proton exchange membranes. Journal of Power Sources, 2009, 193, 507-514.	4.0	49
56	Mesoporous chromium nitride as a high performance non-carbon support for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 7041.	1.3	49
57	Novel acid–base polyimides synthesized from binaphthalene dianhydrie and triphenylamine-containing diamine as proton exchange membranes. Journal of Membrane Science, 2008, 314, 24-32.	4.1	48
58	Template-mediated growth of microsphere, microbelt and nanorod α-MoO3 structures and their high pseudo-capacitances. Journal of Materials Chemistry A, 2013, 1, 12926.	5.2	47
59	Pd nanoparticles supported on WO3/C hybrid material as catalyst for oxygen reduction reaction. Journal of Power Sources, 2008, 185, 941-945.	4.0	46
60	Synthesis and property of a novel sulfonated poly(ether ether ketone) with high selectivity for direct methanol fuel cell applications. Journal of Membrane Science, 2009, 343, 164-170.	4.1	46
61	The enhancement effect of MoOx on Pd/C catalyst for the electrooxidation of formic acid. Electrochimica Acta, 2011, 56, 2051-2056.	2.6	46
62	Implantation of Nafion® ionomer into polyvinyl alcohol/chitosan composites to form novel proton-conducting membranes for direct methanol fuel cells. Journal of Power Sources, 2009, 194, 730-736.	4.0	45
63	Recent advances in nanostructured transition metal nitrides for fuel cells. Journal of Materials Chemistry A, 2020, 8, 20803-20818.	5.2	45
64	Mesoporous vanadium nitride as a high performance catalyst support for formic acid electrooxidation. Chemical Communications, 2012, 48, 10502.	2.2	44
65	Enhanced cyclability of Li–O ₂ batteries with cathodes of Ir and MnO ₂ supported on well-defined TiN arrays. Nanoscale, 2018, 10, 2983-2989.	2.8	44
66	Mo2C/CNTs supported Pd nanoparticles for highly efficient catalyst towards formic acid electrooxidation. Journal of Materials Chemistry A, 2013, 1, 1179-1184.	5.2	41
67	Synthesis and characterization of rigid-rod sulfonated polyimides bearing sulfobenzoyl side groups as proton exchange membranes. Journal of Membrane Science, 2007, 295, 148-158.	4.1	39
68	Compositionâ€Tunable Antiperovskite Cu _{<i>x</i>} In _{1â^'<i>x</i>} NNi ₃ as Superior Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 17488-17493.	7.2	39
69	Novel hydrophilic–hydrophobic multiblock copolyimides as proton exchange membranes: Enhancing the proton conductivity. Polymer, 2009, 50, 4505-4511.	1.8	38
70	Self-assembled phosphomolybdic acid–polyaniline–graphene composite-supported efficient catalyst towards methanol oxidation. Journal of Materials Chemistry A, 2013, 1, 6687.	5.2	38
71	A renewable wood-derived cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 14291-14298.	5.2	38
72	N, S-codoped CNTs supported Co4S3 nanoparticles prepared by using CdS nanorods as sulfur sources and hard templates: An efficient catalyst for reversible oxygen electrocatalysis. Journal of Colloid and Interface Science, 2020, 560, 186-197.	5.0	38

#	Article	IF	CITATIONS
73	Synthesis and characterization of novel sulfonated polyimides from 1,4-bis(4-aminophenoxy)-naphthyl-2,7-disulfonic acid. Polymer, 2007, 48, 2280-2287.	1.8	37
74	Synthesis and properties of novel sulfonated polyimides containing binaphthyl groups as proton-exchange membranes for fuel cells. Journal of Polymer Science Part A, 2007, 45, 222-231.	2.5	34
75	Co ₄ Nâ€Decorated 3D Woodâ€Derived Carbon Host Enables Enhanced Cathodic Electrocatalysis and Homogeneous Lithium Deposition for Lithium–Sulfur Full Cells. Small, 2022, 18, e2105664.	5.2	34
76	Sulfonated poly(arylene-co-imide)s as water stable proton exchange membrane materials for fuel cells. Journal of Membrane Science, 2008, 315, 172-179.	4.1	33
77	Synthesis and characterization of novel sulfonated poly(arylene ether ketone) copolymers with pendant carboxylic acid groups for proton exchange membranes. Journal of Power Sources, 2009, 191, 253-258.	4.0	33
78	Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles. Analyst, The, 2011, 136, 1351.	1.7	33
79	Dendrite-Free Composite Li Anode Assisted by Ag Nanoparticles in a Wood-Derived Carbon Frame. ACS Applied Materials & Interfaces, 2019, 11, 18361-18367.	4.0	33
80	Sulfonated poly(ether ether ketone)/aminopropyltriethoxysilane/phosphotungstic acid hybrid membranes with non-covalent bond: Characterization, thermal stability, and proton conductivity. Solid State Ionics, 2008, 179, 2265-2273.	1.3	31
81	Optimizing the Electronic Structure of Ordered Pt–Co–Ti Ternary Intermetallic Catalyst to Boost Acidic Oxygen Reduction. ACS Catalysis, 2022, 12, 7571-7578.	5.5	31
82	Synthesis and characterization of H5PMo10V2O40 deposited Pt/C nanocatalysts for methanol electrooxidation. Journal of Power Sources, 2010, 195, 1619-1623.	4.0	29
83	Mo2N/C hybrid material as a promising support for the electro-oxidation of methanol and formic acid. Electrochemistry Communications, 2013, 33, 63-67.	2.3	25
84	Ni ₃ FeN‣upported Fe ₃ Pt Intermetallic Nanoalloy as a Highâ€Performance Bifunctional Catalyst for Metal–Air Batteries. Angewandte Chemie, 2017, 129, 10033-10037.	1.6	25
85	High proton conductive advanced hybrid membrane based on sulfonated Si-SBA-15. International Journal of Hydrogen Energy, 2009, 34, 6740-6748.	3.8	24
86	Atomically-dispersed NiN ₄ –Cl active sites with axial Ni–Cl coordination for accelerating electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 6007-6015.	5.2	22
87	Fluorination activates the basal plane HER activity of ReS ₂ : a combined experimental and theoretical study. Journal of Materials Chemistry A, 2021, 9, 14451-14458.	5.2	21
88	Proteinâ€Directed In Situ Synthesis of Gold Nanoparticles on Reduced Graphene Oxide Modified Electrode for Nonenzymatic Glucose Sensing. Electroanalysis, 2012, 24, 2348-2353.	1.5	20
89	General Strategy for Synthesis of Ordered Pt ₃ M Intermetallics with Ultrasmall Particle Size. Angewandte Chemie, 2020, 132, 7931-7937.	1.6	20
90	Mesoporous TiN as a Noncarbon Support of Agâ€Rich PtAg Nanoalloy Catalysts for Oxygen Reduction Reaction in Alkaline Media. ChemSusChem, 2014, 7, 3356-3361.	3.6	19

#	Article	IF	CITATIONS
91	Strategies to enhance the electrochemical performances of Pt-based intermetallic catalysts. Chemical Communications, 2021, 57, 11-26.	2.2	19
92	Blends based on sulfonated poly[bis(benzimidazobenzisoquinolinones)] and poly(vinylidene fluoride) for polymer electrolyte membrane fuel cell. Journal of Membrane Science, 2009, 341, 155-162.	4.1	18
93	Encapsulation of ultrafine Pd nanoparticles within the shallow layers of UiO-67 for highly efficient hydrogenation reactions. Science China Chemistry, 2021, 64, 109-115.	4.2	18
94	Surface-modified Nafion® membrane by casting proton-conducting polyelectrolyte complexes for direct methanol fuel cells. Journal of Power Sources, 2007, 173, 162-165.	4.0	15
95	A simple LC–MS/MS method for determination of deferasirox in human plasma: Troubleshooting of interference from ferric ion in method development and its application. Journal of Pharmaceutical and Biomedical Analysis, 2018, 151, 145-150.	1.4	15
96	Synthesis of sulfonated poly(arylene-co-naphthalimide)s as novel polymers for proton exchange membranes. Polymer, 2008, 49, 3272-3278.	1.8	14
97	Robust InNCo _{3–<i>x</i>} Mn <i>_{<i>x</i>}</i> Nitride-Supported Pt Nanoparticles as High-Performance Bifunctional Electrocatalysts for Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 5293-5300.	2.5	13
98	Proton conductivity enhancement by nanostructural control of sulphonated poly (ether ether) Tj ETQq0 0 0 rgBT	/Qvgrlock	10 Tf 50 46
99	Recent Advances and Perspectives in Lithiumâ^'Sulfur Pouch Cells. Molecules, 2021, 26, 6341.	1.7	12
	Ultrafast Carbothermal Shock Constructing		

100	Ni ₃ Fe _{1–<i>x</i>} Cr _{<i>x</i>} Intermetallic Integrated Electrodes for Efficient and Durable Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2022, 14, 19524-19533.	4.0	10
101	Sulfonated poly(ether ether ketone)/epoxy/phenol novolac blend protonâ€exchange membranes with low methanol permeability. Journal of Applied Polymer Science, 2009, 111, 1335-1343.	1.3	8
102	Synthesis and properties of water stable poly[bis(benzimidazobenzisoquinolinone)] ionomers for proton exchange membranes fuel cells. Journal of Membrane Science, 2009, 326, 420-428.	4.1	8
103	Compositionâ€Tunable Antiperovskite Cu _{<i>x</i>} In _{1â^'<i>x</i>} NNi ₃ as Superior Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2020, 132, 17641-17646.	1.6	7
104	Sulphonated Tetramethyl Poly(ether ether ketone)/Epoxy/Sulphonated Phenol Novolac Semiâ€ ŀ PN Membranes for Direct Methanol Fuel Cells. Fuel Cells, 2009, 9, 570-578.	1.5	4
105	CuNCo3-Xvx Antiperovskite As a High Performance Catalyst for Oxygen Evolution Reaction. ECS Meeting Abstracts, 2019, , .	0.0	0