Nicholas A J Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2540371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 2018, 359, 80-83.	6.0	1,515
2	A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution, 2013, 28, 167-177.	4.2	1,341
3	Rising to the challenge of sustaining coral reef resilience. Trends in Ecology and Evolution, 2010, 25, 633-642.	4.2	872
4	The importance of structural complexity in coral reef ecosystems. Coral Reefs, 2013, 32, 315-326.	0.9	628
5	Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature, 2015, 518, 94-97.	13.7	607
6	Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient?. Global Change Biology, 2006, 12, 2220-2234.	4.2	584
7	Dynamic fragility of oceanic coral reef ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8425-8429.	3.3	566
8	The future of hyperdiverse tropical ecosystems. Nature, 2018, 559, 517-526.	13.7	452
9	Harnessing global fisheries to tackle micronutrient deficiencies. Nature, 2019, 574, 95-98.	13.7	402
10	Comanagement of coral reef social-ecological systems. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5219-5222.	3.3	400
11	Bright spots among the world's coral reefs. Nature, 2016, 535, 416-419.	13.7	394
12	Effects Of Climate-Induced Coral Bleaching On Coral-Reef Fishes — Ecological And Economic Consequences. Oceanography and Marine Biology, 2008, , 251-296.	1.0	351
13	Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Global Environmental Change, 2012, 22, 12-20.	3.6	350
14	Lag Effects in the Impacts of Mass Coral Bleaching on Coral Reef Fish, Fisheries, and Ecosystems. Conservation Biology, 2007, 21, 1291-1300.	2.4	336
15	Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Marine Biology, 2007, 151, 1069-1076.	0.7	311
16	Evidence for multiple stressor interactions and effects on coral reefs. Global Change Biology, 2014, 20, 681-697.	4.2	307
17	Marine reserves as linked social–ecological systems. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18262-18265.	3.3	286
18	Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17230-17233.	3.3	277

#	Article	IF	CITATIONS
19	Recovery potential of the world's coral reef fishes. Nature, 2015, 520, 341-344.	13.7	267
20	TOWARD PRISTINE BIOMASS: REEF FISH RECOVERY IN CORAL REEF MARINE PROTECTED AREAS IN KENYA. , 2007, 17, 1055-1067.		265
21	Coral reef ecosystem services in the Anthropocene. Functional Ecology, 2019, 33, 1023-1034.	1.7	260
22	Linking Social and Ecological Systems to Sustain Coral Reef Fisheries. Current Biology, 2009, 19, 206-212.	1.8	257
23	Loss of coral reef growth capacity to track future increases in sea level. Nature, 2018, 558, 396-400.	13.7	250
24	Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes. PLoS Biology, 2011, 9, e1000606.	2.6	249
25	Capturing the cornerstones of coral reef resilience: linking theory to practice. Coral Reefs, 2008, 27, 795-809.	0.9	240
26	Western Indian Ocean coral communities: bleaching responses and susceptibility to extinction. Marine Ecology - Progress Series, 2007, 337, 1-13.	0.9	239
27	Climate Warming, Marine Protected Areas and the Ocean-Scale Integrity of Coral Reef Ecosystems. PLoS ONE, 2008, 3, e3039.	1.1	220
28	Changes in Biodiversity and Functioning of Reef Fish Assemblages following Coral Bleaching and Coral Loss. Diversity, 2011, 3, 424-452.	0.7	213
29	Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs, 2017, 36, 561-575.	0.9	210
30	Seabirds enhance coralÂreef productivity and functioning in the absence of invasive rats. Nature, 2018, 559, 250-253.	13.7	205
31	Coral reef recovery dynamics in a changing world. Coral Reefs, 2011, 30, 283-294.	0.9	204
32	Prioritizing Key Resilience Indicators to Support Coral Reef Management in a Changing Climate. PLoS ONE, 2012, 7, e42884.	1.1	204
33	Extinction vulnerability of coral reef fishes. Ecology Letters, 2011, 14, 341-348.	3.0	201
34	Operationalizing resilience for adaptive coral reef management under global environmental change. Global Change Biology, 2015, 21, 48-61.	4.2	201
35	Managing resilience to reverse phase shifts in coral reefs. Frontiers in Ecology and the Environment, 2013, 11, 541-548.	1.9	199
36	Exploitation and habitat degradation as agents of change within coral reef fish communities. Global Change Biology, 2008, 14, 2796-2809.	4.2	194

#	Article	IF	CITATIONS
37	Evaluating Social and Ecological Vulnerability of Coral Reef Fisheries to Climate Change. PLoS ONE, 2013, 8, e74321.	1.1	192
38	Gravity of human impacts mediates coral reef conservation gains. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6116-E6125.	3.3	185
39	Coral reefs as novel ecosystems: embracing new futures. Current Opinion in Environmental Sustainability, 2014, 7, 9-14.	3.1	181
40	Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nature Ecology and Evolution, 2019, 3, 1341-1350.	3.4	175
41	Conservation action in a changing climate. Conservation Letters, 2008, 1, 53-59.	2.8	170
42	The effects of marine reserve protection on the trophic relationships of reef fishes on the Great Barrier Reef. Environmental Conservation, 2003, 30, 200-208.	0.7	169
43	Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs, 2007, 26, 641-653.	0.9	169
44	Size structural change in lightly exploited coral reef fish communities: evidence for weak indirect effects. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 466-475.	0.7	163
45	Mass coral bleaching causes biotic homogenization of reef fish assemblages. Global Change Biology, 2018, 24, 3117-3129.	4.2	162
46	Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world's largest noâ€ŧake marine protected area. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 232-261.	0.9	150
47	Size-spectra as indicators of the effects of fishing on coral reef fish assemblages. Coral Reefs, 2005, 24, 118-124.	0.9	149
48	To Fish or Not to Fish: Factors at Multiple Scales Affecting Artisanal Fishers' Readiness to Exit a Declining Fishery. PLoS ONE, 2012, 7, e31460.	1.1	149
49	Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecological Applications, 2010, 20, 442-451.	1.8	144
50	The future of resilience-based management in coral reef ecosystems. Journal of Environmental Management, 2019, 233, 291-301.	3.8	143
51	Water quality mediates resilience on the Great Barrier Reef. Nature Ecology and Evolution, 2019, 3, 620-627.	3.4	139
52	Social determinants of adaptive and transformative responses to climate change. Nature Climate Change, 2020, 10, 823-828.	8.1	138
53	Reef shark declines in remote atolls highlight the need for multiâ€faceted conservation action. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, 543-548.	0.9	131
54	Global Effects of Local Human Population Density and Distance to Markets on the Condition of Coral Reef Fisheries. Conservation Biology, 2013, 27, 453-458.	2.4	129

#	Article	IF	CITATIONS
55	Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome, 2018, 6, 147.	4.9	123
56	Gearâ€based fisheries management as a potential adaptive response to climate change and coral mortality. Journal of Applied Ecology, 2009, 46, 724-732.	1.9	119
57	Fear of Fishers: Human Predation Explains Behavioral Changes in Coral Reef Fishes. PLoS ONE, 2011, 6, e22761.	1.1	115
58	Discontinuities, crossâ€scale patterns, and the organization of ecosystems. Ecology, 2014, 95, 654-667.	1.5	109
59	Human Disruption of Coral Reef Trophic Structure. Current Biology, 2017, 27, 231-236.	1.8	105
60	The Last Call for Marine Wilderness?. BioScience, 2013, 63, 397-402.	2.2	103
61	Guiding coral reef futures in the Anthropocene. Frontiers in Ecology and the Environment, 2016, 14, 490-498.	1.9	103
62	Predictability of coral bleaching from synoptic satellite and in situ temperature observations. Coral Reefs, 2007, 26, 695-701.	0.9	102
63	Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science, 2020, 368, 307-311.	6.0	99
64	Herbivore crossâ€scale redundancy supports response diversity and promotes coral reef resilience. Journal of Applied Ecology, 2016, 53, 646-655.	1.9	96
65	Synergies and tradeoffs in how managers, scientists, and fishers value coral reef ecosystem services. Global Environmental Change, 2013, 23, 1444-1453.	3.6	94
66	The Resilience of Marine Ecosystems to Climatic Disturbances. BioScience, 2017, 67, 208-220.	2.2	94
67	Recovery trajectories of coral reef fish assemblages within Kenyan marine protected areas. Marine Ecology - Progress Series, 2005, 294, 241-248.	0.9	92
68	Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs, 2011, 30, 739.	0.9	90
69	Perceptions of trends in Seychelles artisanal trap fisheries: comparing catch monitoring, underwater visual census and fishers' knowledge. Environmental Conservation, 2011, 38, 75-88.	0.7	90
70	Declining reliance on marine resources in remote South Pacific societies: ecological versus socio-economic drivers. Coral Reefs, 2007, 26, 997-1008.	0.9	89
71	Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos) Tj ETQq1	1 0,784314	4 rgBT /Overi
72	Structural complexity mediates functional structure of reef fish assemblages among coral habitats. Environmental Biology of Fishes, 2017, 100, 193-207.	0.4	86

5

#	Article	IF	CITATIONS
73	Coral reef ecology in the Anthropocene. Functional Ecology, 2019, 33, 1014-1022.	1.7	86
74	Productive instability of coral reef fisheries after climate-driven regime shifts. Nature Ecology and Evolution, 2019, 3, 183-190.	3.4	86
75	The Influence of Coral Reef Benthic Condition on Associated Fish Assemblages. PLoS ONE, 2012, 7, e42167.	1.1	83
76	Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Journal of Experimental Biology, 2010, 213, 894-900.	0.8	82
77	Cross-scale Habitat Structure Drives Fish Body Size Distributions on Coral Reefs. Ecosystems, 2013, 16, 478-490.	1.6	79
78	Influence of instantaneous variation on estimates of coral reef fish populations and communities. Marine Ecology - Progress Series, 2007, 340, 221-234.	0.9	78
79	Home-range allometry in coral reef fishes: comparison to other vertebrates, methodological issues and management implications. Oecologia, 2015, 177, 73-83.	0.9	76
80	Form and function of tropical macroalgal reefs in the Anthropocene. Functional Ecology, 2019, 33, 989-999.	1.7	76
81	Biomassâ€based targets and the management of multispecies coral reef fisheries. Conservation Biology, 2015, 29, 409-417.	2.4	75
82	Weak Compliance Undermines the Success of No-Take Zones in a Large Government-Controlled Marine Protected Area. PLoS ONE, 2012, 7, e50074.	1.1	74
83	Bottlenecks to coral recovery in the Seychelles. Coral Reefs, 2014, 33, 449-461.	0.9	73
84	Remote coral reefs can sustain high growth potential and may match future sea-level trends. Scientific Reports, 2015, 5, 18289.	1.6	73
85	Parsing human and biophysical drivers of coral reef regimes. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182544.	1.2	72
86	Time to integrate global climate change and biodiversity scienceâ€ p olicy agendas. Journal of Applied Ecology, 2021, 58, 2384-2393.	1.9	72
87	Thermal stress induces persistently altered coral reef fish assemblages. Global Change Biology, 2019, 25, 2739-2750.	4.2	71
88	Coral mortality versus structural collapse as drivers of corallivorous butterflyfish decline. Biodiversity and Conservation, 2009, 18, 3325-3336.	1.2	70
89	Habitat Complexity: Coral Structural Loss Leads to Fisheries Declines. Current Biology, 2014, 24, R359-R361.	1.8	70
90	Transitional states in marine fisheries: adapting to predicted global change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3753-3763.	1.8	69

#	Article	IF	CITATIONS
91	Spillover of fish naÃ ⁻ veté from marine reserves. Ecology Letters, 2013, 16, 191-197.	3.0	69
92	Social-ecological alignment and ecological conditions in coral reefs. Nature Communications, 2019, 10, 2039.	5.8	69
93	Climatic and local stressor interactions threaten tropical forests and coral reefs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190116.	1.8	69
94	Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Global Change Biology, 2019, 25, 3424-3437.	4.2	68
95	Ecological versatility and the decline of coral feeding fishes following climate driven coral mortality. Marine Biology, 2007, 153, 119-127.	0.7	67
96	Effect of Macroalgal Expansion and Marine Protected Areas on Coral Recovery Following a Climatic Disturbance. Conservation Biology, 2012, 26, 995-1004.	2.4	67
97	Effects of fisheries closure size, age, and history of compliance on coral reef fish communities in the western Indian Ocean. Marine Ecology - Progress Series, 2009, 396, 99-109.	0.9	64
98	Effects of Customary Marine Closures on Fish Behavior, Spear-Fishing Success, and Underwater Visual Surveys. Conservation Biology, 2010, 25, no-no.	2.4	63
99	Coral reefs in a crystal ball: predicting the future from the vulnerability of corals and reef fishes to multiple stressors. Current Opinion in Environmental Sustainability, 2014, 7, 59-64.	3.1	63
100	Biogeography and Change among Regional Coral Communities across the Western Indian Ocean. PLoS ONE, 2014, 9, e93385.	1.1	62
101	Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs, 2014, 33, 409-419.	0.9	62
102	Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nature Ecology and Evolution, 2020, 4, 919-926.	3.4	62
103	Identifying Reefs of Hope and Hopeful Actions: Contextualizing Environmental, Ecological, and Social Parameters to Respond Effectively to Climate Change. Conservation Biology, 2009, 23, 662-671.	2.4	61
104	Boom and bust of keystone structure on coral reefs. Coral Reefs, 2019, 38, 625-635.	0.9	60
105	Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Science Advances, 2019, 5, eaaw9976.	4.7	60
106	Management applications of discontinuity theory. Journal of Applied Ecology, 2016, 53, 688-698.	1.9	59
107	Changing role of coral reef marine reserves in a warming climate. Nature Communications, 2020, 11, 2000.	5.8	58
108	Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecology and Evolution, 2017, 7, 2626-2635.	0.8	57

#	Article	IF	CITATIONS
109	Barriers and bridges to the integration of social–ecological resilience and law. Frontiers in Ecology and the Environment, 2015, 13, 332-337.	1.9	56
110	Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish and Fisheries, 2020, 21, 700-717.	2.7	56
111	Hierarchical drivers of reef-fish metacommunity structure. Ecology, 2009, 90, 252-264.	1.5	54
112	Interactive effects of live coral and structural complexity on the recruitment of reef fishes. Coral Reefs, 2012, 31, 919-927.	0.9	53
113	Coral Reef Community Composition in the Context of Disturbance History on the Great Barrier Reef, Australia. PLoS ONE, 2014, 9, e101204.	1.1	52
114	Social drivers forewarn of marine regime shifts. Frontiers in Ecology and the Environment, 2016, 14, 252-260.	1.9	51
115	Detecting spatial regimes in ecosystems. Ecology Letters, 2017, 20, 19-32.	3.0	51
116	Critical research needs for managing coral reef marine protected areas: Perspectives of academics and managers. Journal of Environmental Management, 2013, 114, 84-91.	3.8	49
117	Detection heterogeneity in underwater visualâ€census data. Journal of Fish Biology, 2008, 73, 1748-1763.	0.7	48
118	A review of a decade of lessons from one of the world's largest MPAs: conservation gains and key challenges. Marine Biology, 2020, 167, 1.	0.7	47
119	Local fishing influences coral reef fish behavior inside protected areas of the Indo-Pacific. Biological Conservation, 2015, 182, 8-12.	1.9	45
120	Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Global Change Biology, 2019, 25, 2619-2632.	4.2	45
121	Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Global Change Biology, 2020, 26, 1285-1294.	4.2	45
122	Marine reserve recovery rates towards a baseline are slower for reef fish community life histories than biomass. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151938.	1.2	44
123	Ecological limitations to the resilience of coral reefs. Coral Reefs, 2016, 35, 1271-1280.	0.9	44
124	Drivers and predictions of coral reef carbonate budget trajectories. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162533.	1.2	43
125	Gradients of disturbance and environmental conditions shape coral community structure for southâ€eastern Indian Ocean reefs. Diversity and Distributions, 2018, 24, 605-620.	1.9	43
126	Ecosystem regime shifts disrupt trophic structure. Ecological Applications, 2018, 28, 191-200.	1.8	43

#	Article	IF	CITATIONS
127	Assessing interactions of multiple stressors when data are limited: A Bayesian belief network applied to coral reefs. Global Environmental Change, 2014, 27, 64-72.	3.6	42
128	Influence of habitat condition and competition on foraging behaviour of parrotfishes. Marine Ecology - Progress Series, 2012, 457, 113-124.	0.9	42
129	Fish foraging patterns, vulnerability to fishing, and implications for the management of ecosystem function across scales. Ecological Applications, 2013, 23, 1632-1644.	1.8	41
130	Relationships between temperature, bleaching and white syndrome on the Great Barrier Reef. Coral Reefs, 2013, 32, 1-12.	0.9	40
131	Ecological indicators for coral reef fisheries management. Fish and Fisheries, 2016, 17, 1029-1054.	2.7	40
132	Cross-scale habitat structure driven by coral species composition on tropical reefs. Scientific Reports, 2017, 7, 7557.	1.6	40
133	Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean. PLoS ONE, 2016, 11, e0154585.	1.1	38
134	Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. PLoS Biology, 2020, 18, e3000702.	2.6	38
135	δ15N and δ13C elucidation of size-structured food webs in a Western Arabian Sea demersal trawl assemblage. Marine Ecology - Progress Series, 2008, 353, 55-63.	0.9	36
136	Rethinking coral reef functional futures. Functional Ecology, 2019, 33, 942-947.	1.7	36
137	Is coral richness related to community resistance to and recovery from disturbance?. PeerJ, 2014, 2, e308.	0.9	36
138	Unexpected high vulnerability of functions in wilderness areas: evidence from coral reef fishes. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160128.	1.2	35
139	A framework for understanding climate change impacts on coral reef social–ecological systems. Regional Environmental Change, 2016, 16, 1133-1146.	1.4	35
140	Combining fish and benthic communities into multiple regimes reveals complex reef dynamics. Scientific Reports, 2018, 8, 16943.	1.6	35
141	Micronutrient supply from global marine fisheries under climate change and overfishing. Current Biology, 2021, 31, 4132-4138.e3.	1.8	35
142	Design Factors and Socioeconomic Variables Associated with Ecological Responses to Fishery Closures in the Western Indian Ocean. Coastal Management, 2011, 39, 412-424.	1.0	33
143	Visual versus video methods for estimating reef fish biomass. Ecological Indicators, 2018, 85, 146-152.	2.6	33
144	Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Current Biology, 2021, 31, 2704-2711.e4.	1.8	33

#	Article	IF	CITATIONS
145	Depth gradients in diversity, distribution and habitat specialisation in coral reef fishes: implications for the depth-refuge hypothesis. Marine Ecology - Progress Series, 2015, 540, 203-215.	0.9	33
146	Abiotic and biotic controls on coral recovery 16Âyears after mass bleaching. Coral Reefs, 2019, 38, 1255-1265.	0.9	31
147	Diversification insulates fisher catch and revenue in heavily exploited tropical fisheries. Science Advances, 2020, 6, eaaz0587.	4.7	31
148	Fish and fisher behaviour influence the vulnerability of groupers (Epinephelidae) to fishing at a multispecies spawning aggregation site. Coral Reefs, 2015, 34, 371-382.	0.9	30
149	Risks to future atoll habitability from climateâ€driven environmental changes. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e700.	3.6	30
150	Habitat structure and body size distributions: crossâ€ecosystem comparison for taxa with determinate and indeterminate growth. Oikos, 2014, 123, 971-983.	1.2	27
151	Habitat and fishing control grazing potential on coral reefs. Functional Ecology, 2020, 34, 240-251.	1.7	27
152	Functional traits illuminate the selective impacts of different fishing gears on coral reefs. Journal of Applied Ecology, 2020, 57, 241-252.	1.9	27
153	Assessing the Effectiveness of Local Management of Coral Reefs Using Expert Opinion and Spatial Bayesian Modeling. PLoS ONE, 2015, 10, e0135465.	1.1	26
154	Uncovering drivers of juvenile coral density following mass bleaching. Coral Reefs, 2019, 38, 637-649.	0.9	26
155	Anthropogenic Stressors, Inter-Specific Competition and ENSO Effects on a Mauritian Coral Reef. Environmental Biology of Fishes, 2006, 78, 57-69.	0.4	25
156	Fishery benefits from behavioural modification of fishes in periodically harvested fisheries closures. Aquatic Conservation: Marine and Freshwater Ecosystems, 2014, 24, 777-790.	0.9	25
157	Trade and foreign fishing mediate global marine nutrient supply. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
158	From microbes to people. Oceanography and Marine Biology, 2011, , .	1.0	23
159	Sea cucumbers in the Seychelles: effects of marine protected areas on highâ€value species. Aquatic Conservation: Marine and Freshwater Ecosystems, 2013, 23, 418-428.	0.9	21
160	Scleractinian coral communities of the inner Seychelles 10 years after the 1998 mortality event. Aquatic Conservation: Marine and Freshwater Ecosystems, 2014, 24, 667-679.	0.9	21
161	Coral species composition drives key ecosystem function on coral reefs. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192214.	1.2	21
162	Drivers of herbivory on coral reefs: species, habitat and management effects. Marine Ecology - Progress Series, 2016, 554, 129-140.	0.9	21

#	Article	IF	CITATIONS
163	Disentangling the response of fishes to recreational fishing over 30†years within a fringing coral reef reserve network. Biological Conservation, 2019, 237, 514-524.	1.9	20
164	Climate-induced increases in micronutrient availability for coral reef fisheries. One Earth, 2022, 5, 98-108.	3.6	20
165	Impact of major depression on cardiovascular outcomes for individuals with hypertension: prospective survival analysis in UK Biobank. BMJ Open, 2019, 9, e024433.	0.8	19
166	Managing fisheries for maximum nutrient yield. Fish and Fisheries, 2022, 23, 800-811.	2.7	19
167	Biological trade-offs underpin coral reef ecosystem functioning. Nature Ecology and Evolution, 2022, 6, 701-708.	3.4	18
168	Harnessing fisheryâ€independent indicators to aid management of dataâ€poor fisheries: weighing habitat and fishing effects. Ecosphere, 2016, 7, e01362.	1.0	17
169	Site-Level Variation in Parrotfish Grazing and Bioerosion as a Function of Species-Specific Feeding Metrics. Diversity, 2020, 12, 379.	0.7	17
170	Regime shifts shorten food chains for mesopredators with potential sublethal effects. Functional Ecology, 2018, 32, 820-830.	1.7	16
171	The Status of Coral Reef Fish Assemblages in the Chagos Archipelago, with Implications for Protected Area Management and Climate Change. Coral Reefs of the World, 2013, , 253-270.	0.3	16
172	Response and Effect Traits of Coral Reef Fish. Frontiers in Marine Science, 2021, 8, .	1.2	15
173	Habitat partitioning and vulnerability of sharks in the Great Barrier Reef Marine Park. Reviews in Fish Biology and Fisheries, 2014, 24, 169-197.	2.4	14
174	Secure local aquatic food systems in the face of declining coral reefs. One Earth, 2021, 4, 1214-1216.	3.6	14
175	Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes. Coral Reefs, 2016, 35, 473-483.	0.9	13
176	Community-wide scan identifies fish species associated with coral reef services across the Indo-Pacific. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181167.	1.2	13
177	Enabling regional management in a changing climate through Bayesian metaâ€analysis of a largeâ€scale disturbance. Global Ecology and Biogeography, 2010, 19, 412-421.	2.7	12
178	Specialist corallivores dominate butterflyfish assemblages in coralâ€dominated reef habitats. Journal of Fish Biology, 2013, 82, 1177-1191.	0.7	12
179	The Influence of Fisher Knowledge on the Susceptibility of Reef Fish Aggregations to Fishing. PLoS ONE, 2014, 9, e91296.	1.1	12
180	Exceptional but vulnerable microbial diversity in coral reef animal surface microbiomes. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200642.	1.2	12

#	Article	IF	CITATIONS
181	Variability in coral reef fish baseline and benchmark biomass in the central and western Indian Ocean provinces. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 28-42.	0.9	12
182	Red and green loops help uncover missing feedbacks in a coral reef social–ecological system. People and Nature, 2020, 2, 608-618.	1.7	11
183	Maximizing regional biodiversity requires a mosaic of protection levels. PLoS Biology, 2021, 19, e3001195.	2.6	11
184	The contribution of macroalgaeâ€associated fishes to smallâ€scale tropical reef fisheries. Fish and Fisheries, 2022, 23, 847-861.	2.7	11
185	Are infestations of Cymo melanodactylus killing Acropora cytherea in the Chagos archipelago?. Coral Reefs, 2010, 29, 941-941.	0.9	10
186	Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae). PLoS ONE, 2015, 10, e0138136.	1.1	10
187	Nitrogen enrichment in macroalgae following mass coral mortality. Coral Reefs, 2021, 40, 767-776.	0.9	10
188	Causal drivers of climateâ€mediated coral reef regime shifts. Ecosphere, 2022, 13, .	1.0	10
189	Synchronous daytime spawning of the solitary coral Fungia danai (Fungiidae) in the Chagos Archipelago, central Indian Ocean. Coral Reefs, 2007, 26, 15-15.	0.9	9
190	Coral reef degradation alters the isotopic niche of reef fishes. Marine Biology, 2017, 164, 1.	0.7	9
191	Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish. Scientific Reports, 2021, 11, 12575.	1.6	9
192	Fishers perceptions of ecosystem service change associated with climateâ€disturbed coral reefs. People and Nature, 2021, 3, 639-657.	1.7	9
193	Bestâ€practice fisheries management associated with reduced stocks and changes in life histories. Fish and Fisheries, 2022, 23, 422-444.	2.7	9
194	Diurnal, land-based predation on shore crabs by moray eels in the Chagos Archipelago. Coral Reefs, 2009, 28, 397-397.	0.9	8
195	Wave exposure shapes reef community composition and recovery trajectories at a remote coral atoll. Coral Reefs, 2021, 40, 1819-1829.	0.9	8
196	Susceptibility of Butterflyfish to Habitat Disturbance. , 2013, , 226-245.		8
197	Spatial scaling properties of coral reef benthic communities. Ecography, 2021, 44, 188-198.	2.1	7
198	Climate impacts alter fisheries productivity and turnover on coral reefs. Coral Reefs, 2022, 41, 921-935.	0.9	7

#	Article	IF	CITATIONS
199	Microbial Shift in the Enteric Bacteriome of Coral Reef Fish Following Climate-Driven Regime Shifts. Microorganisms, 2021, 9, 1711.	1.6	6
200	Mesopredator trophodynamics on thermally stressed coral reefs. Coral Reefs, 2018, 37, 135-144.	0.9	5
201	Linking key human-environment theories to inform the sustainability of coral reefs. Current Biology, 2022, 32, 2610-2620.e4.	1.8	5
202	Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220195.	1.2	4
203	Influence of coral cover and structural complexity on the accuracy of visual surveys of coralâ€reef fish communities. Journal of Fish Biology, 2017, 90, 2425-2433.	0.7	3
204	Perceptions of trends in Seychelles artisanal trap fisheries: comparing catch monitoring, underwater visual census and fishers' knowledge. Environmental Conservation, 2015, 42, 191-192.	0.7	2
205	Weakening macroalgal feedbacks through shading on degraded coral reefs. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1660-1669.	0.9	2
206	Precision and cost-effectiveness of bioindicators to estimate nutrient regimes on coral reefs. Marine Pollution Bulletin, 2021, 170, 112606.	2.3	2
207	Investigating sea urchin densities critical to macroalgal control on degraded coral reefs. Environmental Conservation, 2021, 48, 136-141.	0.7	2
208	Decadal shifts in traits of reef fish communities in marine reserves. Scientific Reports, 2021, 11, 23470.	1.6	2
209	Interspecific differences in environmental response blur trait dynamics in classic statistical analyses. Marine Biology, 2019, 166, 1.	0.7	1
210	Adaptive Management for Novel Ecosystems. , 2015, , 123-146.		1
211	Longâ€ŧerm studies in the Philippines illuminate the relative role of marine reserves versus benthic degradation in driving coral reef fish densities. Journal of Fish Biology, 2018, 93, 761-761.	0.7	0
212	Spatial decoupling of α and β diversity suggest different management needs for coral reef fish along an extensive mid-oceanic ridge. Global Ecology and Conservation, 2022, 36, e02110.	1.0	0