
Margarita Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2540099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A full-scale experimental study of sub-slab pressure fields induced by underground perforated pipes as a soil depressurisation technique in radon mitigation. Journal of Environmental Radioactivity, 2020, 225, 106420.	1.7	3
2	Influence of environmental conditions on concrete manufactured with recycled and steel slag aggregates at early ages and long term. Construction and Building Materials, 2020, 249, 118739.	7.2	19
3	A system designed to monitor in-situ the curing process of sprayed concrete. Construction and Building Materials, 2019, 224, 823-834.	7.2	4
4	Microwire-Based Sensor Array for Measuring Wheel Loads of Vehicles. Sensors, 2019, 19, 4658.	3.8	9
5	A Multisensor System for the Characterization of the Field Pressure in Terrain. Accuracy, Response, and Adjustments. Sensors, 2019, 19, 3942.	3.8	3
6	Combined US and UWB-RF imaging of concrete structures for identification and location of embedded materials. Construction and Building Materials, 2017, 152, 693-701.	7.2	0
7	Ultrasound Transmission Tomography for Detecting and Measuring Cylindrical Objects Embedded in Concrete. Sensors, 2017, 17, 1085.	3.8	15
8	Monitoring of the curing process in precast concrete slabs: An experimental study. Construction and Building Materials, 2016, 122, 406-416.	7.2	15
9	Microstructural and mechanical properties study of the curing process of self-compacting concrete. Materials and Design, 2016, 94, 479-486.	7.0	10
10	Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging. Sensors, 2014, 14, 2280-2304.	3.8	34
11	An Embedded Stress Sensor for Concrete SHM Based on Amorphous Ferromagnetic Microwires. Sensors, 2014, 14, 19963-19978.	3.8	44
12	Optimized OpenCL implementation of the Elastodynamic Finite Integration Technique for viscoelastic media. Computer Physics Communications, 2014, 185, 2683-2696.	7.5	26
13	Non-destructive monitoring of curing process in precast concrete. IOP Conference Series: Materials Science and Engineering, 2012, 42, 012050.	0.6	2
14	Evaluation of freeze–thaw damage in concrete by ultrasonic imaging. NDT and E International, 2012, 52, 86-94.	3.7	80
15	Study of the influence of microstructural parameters on the ultrasonic velocity in steel–fiber-reinforced cementitious materials. Construction and Building Materials, 2011, 25, 3066-3072.	7.2	15
16	Ultrasonic wave propagation in cementitious materials: A multiphase approach of a self-consistent multiple scattering model. Ultrasonics, 2011, 51, 71-84.	3.9	15
17	Characterization of mortar samples using ultrasonic scattering attenuation. Physics Procedia, 2010, 3, 839-845.	1.2	5
18	On the measurement of frequency-dependent ultrasonic attenuation in strongly heterogeneous materials. Ultrasonics, 2010, 50, 824-828.	3.9	21

MARGARITA GONZALEZ

#	Article	IF	CITATIONS
19	Non-destructive characterisation of alumina/aluminium titanate composites using a micromechanical model and ultrasonic determinations. Ceramics International, 2008, 34, 181-188.	4.8	21
20	Non-destructive characterisation of alumina/aluminium titanate composites using a micromechanical model and ultrasonic determinations. Ceramics International, 2008, 34, 189-195.	4.8	5
21	Formulation of a new micromechanic model of three phases for ultrasonic characterization of cement-based materials. Cement and Concrete Research, 2006, 36, 609-616.	11.0	18
22	Application of a micromechanical model of three phases to estimating the porosity of mortar by ultrasound. Cement and Concrete Research, 2006, 36, 617-624.	11.0	29
23	Porosity estimation of aged mortar using a micromechanical model. Ultrasonics, 2006, 44, e1007-e1011.	3.9	9
24	Time-varying prediction filter for structural noise reduction in ultrasonic NDE. Ultrasonics, 2006, 44, e1001-e1005.	3.9	7
25	Speckle reduction by energy time–frequency filtering. Ultrasonics, 2004, 42, 843-846.	3.9	5
26	Effect of the fluid in the inclusions of cement paste on the ultrasonic velocity. Ultrasonics, 2004, 42, 865-869.	3.9	6
27	Application of micromechanics to the characterization of mortar by ultrasound. Ultrasonics, 2002, 40, 217-221.	3.9	29
28	Time–frequency Wiener filtering for structural noise reduction. Ultrasonics, 2002, 40, 259-261.	3.9	14
29	NDE ultrasonic methods to characterise the porosity of mortar. NDT and E International, 2001, 34, 557-562.	3.7	49
30	Signal-to-noise ratio enhancement based on the whitening transformation of colored structural noise. Ultrasonics, 2000, 38, 500-502.	3.9	5
31	Porosity estimation of concrete by ultrasonic NDE. Ultrasonics, 2000, 38, 531-533.	3.9	65