
Mario Ordaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2539739/publications.pdf Version: 2024-02-01

Μαρίο Οροάζ

#	Article	IF	CITATIONS
1	The Mexico Earthquake of September 19, 1985—A Study of Amplification of Seismic Waves in the Valley of Mexico with Respect to a Hill Zone Site. Earthquake Spectra, 1988, 4, 653-673.	1.6	196
2	Inslab Earthquakes of Central Mexico: Peak Ground-Motion Parameters and Response Spectra. Bulletin of the Seismological Society of America, 2005, 95, 2272-2282.	1.1	112
3	Exact computation of input-energy spectra from Fourier amplitude spectra. Earthquake Engineering and Structural Dynamics, 2003, 32, 597-605.	2.5	90
4	Estimation of strength-reduction factors for elastoplastic systems: a new approach. Earthquake Engineering and Structural Dynamics, 1998, 27, 889-901.	2.5	72
5	Inslab Earthquakes of Central Mexico: Q, Source Spectra, and Stress Drop. Bulletin of the Seismological Society of America, 2004, 94, 789-802.	1.1	70
6	Spectral Ratios for Mexico City from Free-Field Recordings. Earthquake Spectra, 1999, 15, 273-295.	1.6	68
7	Earthquake hazard in Mexico City: Observations versus computations. Bulletin of the Seismological Society of America, 1999, 89, 1379-1383.	1.1	62
8	Estimation of Ground Motion for Bhuj (26 January 2001; Mw 7.6) and for Future Earthquakes in India. Bulletin of the Seismological Society of America, 2003, 93, 353-370.	1.1	58
9	Is there truly a "hard―rock site in the Valley of Mexico?. Geophysical Research Letters, 1995, 22, 481-484.	1.5	53
10	Deadly Intraslab Mexico Earthquake of 19 September 2017 (MwÂ7.1): Ground Motion and Damage Pattern in Mexico City. Seismological Research Letters, 2018, 89, 2193-2203.	0.8	53
11	A Preliminary Report on the Tehuacan, Mexico Earthquake of June 15, 1999 (Mw = 7.0). Seismological Research Letters, 1999, 70, 489-504.	0.8	50
12	The Mexico Earthquake of September 19, 1985—Design Spectra for Mexico's Federal District. Earthquake Spectra, 1989, 5, 273-291.	1.6	49
13	Strong ground-motion relations for Mexican interplate earthquakes. Journal of Seismology, 2010, 14, 769-785.	0.6	49
14	Probabilistic earthquake risk assessment using CAPRA: application to the city of Barcelona, Spain. Natural Hazards, 2013, 69, 59-84.	1.6	49
15	CRISIS2008: A Flexible Tool to Perform Probabilistic Seismic Hazard Assessment. Seismological Research Letters, 2013, 84, 495-504.	0.8	48
16	Bayesian Attenuation Regressions: an Application to Mexico City. Geophysical Journal International, 1994, 117, 335-344.	1.0	46
17	Global risk assessment: A fully probabilistic seismic and tropical cyclone wind risk assessment. International Journal of Disaster Risk Reduction, 2014, 10, 461-476.	1.8	41
18	A Preliminary Report on the Tecoman, Mexico Earthquake of 22 January 2003 (Mw 7.4) and Its Effects. Seismological Research Letters, 2003, 74, 279-289.	0.8	40

#	Article	IF	CITATIONS
19	A New Seismic Intensity Parameter to Estimate Damage in Buried Pipelines due to Seismic Wave Propagation. Journal of Earthquake Engineering, 2007, 11, 773-786.	1.4	38
20	Updated Seismic Design Guidelines for Model Building Code of Mexico. Earthquake Spectra, 2009, 25, 869-898.	1.6	38
21	The great Mexican earthquake of 19 June 1858: Expected ground motions and damage in Mexico City from a similar future event. Bulletin of the Seismological Society of America, 1996, 86, 1655-1666.	1.1	38
22	Amplification of Seismic Waves in the Central Indo-Gangetic Basin, India. Bulletin of the Seismological Society of America, 2011, 101, 2231-2242.	1.1	37
23	Duration of strong ground motion during Mexican earthquakes in terms of magnitude, distance to the rupture area and dominant site period. Earthquake Engineering and Structural Dynamics, 2001, 30, 653-673.	2.5	35
24	Earthquake Loss Assessment for Integrated Disaster Risk Management. Journal of Earthquake Engineering, 2008, 12, 48-59.	1.4	34
25	On the Forecasting of Ground-Motion Parameters for Probabilistic Seismic Hazard Analysis. Earthquake Spectra, 2011, 27, 1-21.	1.6	34
26	Source study of two small earthquakes of Delhi, India, and estimation of ground motion from future moderate, local events. Journal of Seismology, 2009, 13, 89-105.	0.6	32
27	A Source and Wave Propagation Study of the Copalillo, Mexico, Earthquake of 21 July 2000 (Mw 5.9): Implications for Seismic Hazard in Mexico City from Inslab Earthquakes. Bulletin of the Seismological Society of America, 2002, 92, 1060-1071.	1.1	29
28	Estimation of Probabilistic Seismic Losses and the Public Economic Resilience—An Approach for a Macroeconomic Impact Evaluation. Journal of Earthquake Engineering, 2008, 12, 60-70.	1.4	29
29	Probabilistic seismic hazard assessment at global level. International Journal of Disaster Risk Reduction, 2014, 10, 419-427.	1.8	29
30	A new approach to probabilistic earthquake-induced tsunami risk assessment. Ocean and Coastal Management, 2016, 119, 68-75.	2.0	28
31	The Mexico Earthquake of September 19, 1985—Estimation of Response Spectra in the Lake Bed Zone of the Valley of Mexico. Earthquake Spectra, 1988, 4, 815-834.	1.6	25
32	Source Time Function and Duration of Mexican Earthquakes. Bulletin of the Seismological Society of America, 2000, 90, 468-482.	1.1	25
33	COMPARISON OF METHODS TO PREDICT RESPONSE SPECTRA AT INSTRUMENTED SITES GIVEN THE MAGNITUDE AND DISTANCE OF AN EARTHQUAKE. Journal of Earthquake Engineering, 2006, 10, 887-902.	1.4	25
34	The Seismic Alert System for Mexico City: An Evaluation of Its Performance and a Strategy for Its Improvement. Bulletin of the Seismological Society of America, 2007, 97, 1718-1729.	1.1	25
35	Near-Trench Mexican Earthquakes Have Anomalously Low Peak Accelerations. Bulletin of the Seismological Society of America, 2003, 93, 953-959.	1.1	24
36	Evaluation of the change in dominant periods in the lake-bed zone of Mexico City produced by ground subsidence through the use of site amplification factors. Soil Dynamics and Earthquake Engineering, 2013, 44, 54-66.	1.9	23

#	Article	IF	CITATIONS
37	Use of seismic data from similar regions. Earthquake Engineering and Structural Dynamics, 1987, 15, 619-634.	2.5	22
38	High-Resolution Seismic Hazard Analysis in a Complex Geological Configuration: The Case of the Sulmona Basin in Central Italy. Earthquake Spectra, 2014, 30, 1801-1824.	1.6	22
39	On the estimation of hysteretic energy demands for SDOF systems. Earthquake Engineering and Structural Dynamics, 2007, 36, 2365-2382.	2.5	21
40	Seismic Loss Estimation and Environmental Issues. Earthquake Spectra, 2015, 31, 1285-1308.	1.6	21
41	The Copala, Guerrero, Mexico Earthquake of September 14, 1995 (Mw=7.4): A Preliminary Report. Seismological Research Letters, 1995, 66, 11-39.	0.8	20
42	Multivariate Bayesian Regression Analysis Applied to Ground-Motion Prediction Equations, Part 2: Numerical Example with Actual Data. Bulletin of the Seismological Society of America, 2010, 100, 1568-1577.	1.1	20
43	Multivariate Bayesian Regression Analysis Applied to Ground-Motion Prediction Equations, Part 1: Theory and Synthetic Example. Bulletin of the Seismological Society of America, 2010, 100, 1551-1567.	1.1	20
44	Event-based approach for probabilistic agricultural drought risk assessment under rainfed conditions. Natural Hazards, 2015, 76, 1297-1318.	1.6	20
45	Intraslab versus Interplate Earthquakes as Recorded in Mexico City: Implications for Seismic Hazard. Earthquake Spectra, 2015, 31, 795-812.	1.6	20
46	Analysis of the Granada (Spain) earthquake of 24 June, 1984 (M = 5) with emphasis on seismic hazard in the Granada Basin. Tectonophysics, 1996, 257, 253-263.	0.9	19
47	Space-Time Clustering of Large Thrust Earthquakes along the Mexican Subduction Zone: An Evidence of Source Stress Interaction. Bulletin of the Seismological Society of America, 2005, 95, 1856-1864.	1.1	19
48	Seismic Fragility Formulations for Segmented Buried Pipeline Systems Including the Impact of Differential Ground Subsidence. Journal of Pipeline Systems Engineering and Practice, 2010, 1, 141-146.	0.9	19
49	Q of Lg Waves in the Central Mexican Volcanic Belt. Bulletin of the Seismological Society of America, 2007, 97, 1259-1266.	1.1	18
50	Hysteretic Energy Demands for SDOF Systems Subjected to Narrow Band Earthquake Ground Motions. Applications to the Lake Bed Zone of Mexico City. Journal of Earthquake Engineering, 2007, 11, 147-165.	1.4	18
51	Estimation of Ground Motion in Mexico City from a Repeat of the MÂ7.0 Acambay Earthquake of 1912. Bulletin of the Seismological Society of America, 2011, 101, 2015-2028.	1.1	18
52	On the Selection of Ground-Motion Prediction Equations for Probabilistic Seismic-Hazard Analysis. Bulletin of the Seismological Society of America, 2014, 104, 1860-1875.	1.1	18
53	On Uncertainties in Probabilistic Seismic Hazard Analysis. Earthquake Spectra, 2016, 32, 1405-1418.	1.6	18
54	R-CRISIS: 35Âyears of continuous developments and improvements for probabilistic seismic hazard analysis. Bulletin of Earthquake Engineering, 2021, 19, 2797-2816.	2.3	18

#	Article	IF	CITATIONS
55	A probabilistic approach for seismic risk assessment based on vulnerability functions. Application to Barcelona. Bulletin of Earthquake Engineering, 2019, 17, 1863-1890.	2.3	17
56	A simple source inversion scheme for displacement seismograms recorded at short distances. Journal of Seismology, 2000, 4, 267-284.	0.6	16
57	Influence of subduction zone structure on coastal and inland attenuation in Mexico. Geophysical Journal International, 2009, 179, 215-230.	1.0	16
58	Disaster risk from a macroeconomic perspective: a metric for fiscal vulnerability evaluation. Disasters, 2010, 34, 1064-1083.	1.1	16
59	Event-based approach for probabilistic flood risk assessment. International Journal of River Basin Management, 2014, 12, 377-389.	1.5	15
60	Reduction of matched and unmatched uncertainties for a class of nonlinear perturbed systems via robust control. International Journal of Robust and Nonlinear Control, 2019, 29, 2510-2524.	2.1	15
61	Development and Validation of Software CRISIS to Perform Probabilistic Seismic Hazard Assessment with Emphasis on the Recent CRISIS2015. Computacion Y Sistemas, 2017, 21, .	0.2	14
62	A simple probabilistic model to combine losses arising from the simultaneous occurrence of several hazards. Natural Hazards, 2015, 76, 389-396.	1.6	13
63	Considering the impacts of simultaneous perils. Disaster Prevention and Management, 2019, 28, 823-837.	0.6	13
64	A note on the fast computation of response spectra estimates. Earthquake Engineering and Structural Dynamics, 1990, 19, 971-976.	2.5	11
65	A simple approximation to the Gaussian distribution. Structural Safety, 1991, 9, 315-318.	2.8	11
66	Site response analysis in the valley of Mexico: Selection of input motion and extent of non-linear soil behaviour. Earthquake Engineering and Structural Dynamics, 1994, 23, 895-908.	2.5	11
67	When probabilistic seismic hazard climbs volcanoes: the Mt.ÂEtna case, Italy – PartÂ2: Computational implementation and first results. Natural Hazards and Earth System Sciences, 2017, 17, 1999-2015.	1.5	11
68	Some Integrals Useful in Probabilistic Seismic Hazard Analysis. Bulletin of the Seismological Society of America, 2004, 94, 1510-1516.	1.1	9
69	A Report on the Atoyac, Mexico, Earthquake of 13 April 2007 (Mw 5.9). Seismological Research Letters, 2007, 78, 635-648.	0.8	9
70	Optimum Earthquake Design Coefficients Based on Probabilistic Seismic Hazard Analyses: Theory and Applications. Earthquake Spectra, 2017, 33, 1455-1474.	1.6	9
71	Maximum Earthquake Magnitude at Fault. Journal of Engineering Mechanics - ASCE, 1990, 116, 204-216.	1.6	8
72	Observed damage in public school buildings during the 2017 Mexico earthquakes. Earthquake Spectra, 2020, 36, 110-129.	1.6	8

#	Article	IF	CITATIONS
73	Title is missing!. Journal of Earthquake Engineering, 2006, 10, 887.	1.4	7
74	Groundâ€Motion Simulation by the Empirical Green's Function Method with a Source Defined by Two Corner Frequencies and a Two‣tage Summation Scheme. Bulletin of the Seismological Society of America, 2018, 108, 901-912.	1.1	7
75	Inclusion of site-effects: An approach coherent with contemporary event-based PSHA practices. Soil Dynamics and Earthquake Engineering, 2022, 158, 107286.	1.9	7
76	Evaluation of the Intensity Measure Approach in Performance-Based Earthquake Engineering with Simulated Ground Motions. Bulletin of the Seismological Society of America, 2014, 104, 669-683.	1.1	6
77	Combination rule for critical structural response in soft soil. Engineering Structures, 2015, 82, 1-10.	2.6	6
78	Joint Maximum Likelihood Estimators for Gutenberg-Richter Parameters <i>λ</i> ₀ and <i>β</i> Using Subcatalogs. Earthquake Spectra, 2018, 34, 301-312.	1.6	6
79	Use of Corrected Sinusoidal Pulses to Estimate Inelastic Demands of Elasto-Perfectly Plastic Oscillators Subjected to Narrow-Band Motions. Journal of Earthquake Engineering, 2007, 11, 303-325.	1.4	5
80	Empirical Green's Functions Modified by Attenuation for Sources Located at Intermediate and Far Distances from the Original Source. Journal of Earthquake Engineering, 2008, 12, 584-595.	1.4	5
81	Mismatch between teleseismic and strong-motion source spectra. Bulletin of the Seismological Society of America, 1992, 82, 1497-1502.	1.1	5
82	Risk caused by the propagation of earthquake losses through the economy. Nature Communications, 2022, 13, .	5.8	5
83	Spectral Attenuation Relations at Soft Sites Based on Existing Attenuation Relations for Rock Sites. Journal of Earthquake Engineering, 2009, 13, 236-251.	1.4	4
84	The 6 September 1997 (Mw 4.5) Coatzacoalcos-Minatitlan, Veracruz, Mexico earthquake: implications for tectonics and seismic hazard of the region. Geofisica International, 2015, 54, e1.	0.2	4
85	Probabilistic Assessment of Seismic Risk of Dwelling Buildings of Barcelona. Implication for theÂCity Resilience. Resilient Cities, 2019, , 229-265.	0.6	4
86	Strong motion seismology in Mexico. Tectonophysics, 1993, 218, 43-57.	0.9	3
87	The Great Sumatra-Andaman Earthquake of 2004: Regional Broadband Seismograms from India. Seismological Research Letters, 2005, 76, 684-692.	0.8	3
88	Damage severity estimation of an elastoplastic single-degree-of-freedom oscillator from its ground and response accelerations. Structural Control and Health Monitoring, 2014, 21, 1-22.	1.9	3
89	An earthquake-event-based method for mapping tsunami hazards. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2016, 169, 148-162.	1.4	3
90	Modelling correlation between Gutenberg–Richter parameters a and b in PSHA. Bulletin of Earthquake Engineering, 2018, 16, 1829-1846.	2.3	3

#	Article	IF	CITATIONS
91	Sensitivity Analysis of Seismic Parameters in the Probabilistic Seismic Hazard Assessment (PSHA) for Barcelona Applying the New R-CRISIS. Computacion Y Sistemas, 2018, 22, .	0.2	3
92	Future ground motions in Mexico City. Tectonophysics, 1993, 218, 141-155.	0.9	2
93	66 Advances in seismology with impact on earthquake engineering. International Geophysics, 2003, 81, 1081-1095.	0.6	2
94	Inelastic-Strength Spectra in Probabilistic Seismic-Hazard Analysis. Bulletin of the Seismological Society of America, 2007, 97, 2171-2181.	1.1	2
95	Erratum to Inslab Earthquakes of Central Mexico: Peak Ground-Motion Parameters and Response Spectra. Bulletin of the Seismological Society of America, 2009, 99, 2607-2609.	1.1	2
96	Estimating tsunami potential of earthquakes in the Sumatra–Andaman region based on broadband seismograms in India. Natural Hazards, 2012, 64, 1491-1510.	1.6	2
97	Ultimate uniform bounded-stability of inertial coupling electromechanical system via nonlinear time-varying feedback. International Journal of Control, 2017, 90, 715-728.	1.2	2
98	Comment on "Do Directionality Effects Influence Expected Damage? A Case Study of the 2017 Central Mexico Earthquake―by Luis A. Pinzón, Luis G. Pujades, Sergio A. DAaz, and Rodrigo E. Alva. Bulletin of the Seismological Society of America, 2020, 110, 387-392.	1.1	2
99	MAPAS DE VELOCIDAD MÃXIMA DEL SUELO PARA LA CIUDAD DE MÉXICO. Revista De IngenierÃa SÃsmica, 2004, , 37.	0.1	2
100	On the use of probability concentrations. Structural Safety, 1988, 5, 317-318.	2.8	1
101	An analytical solution for the Bayesian estimation of ground motion from macroseismic intensity data. Bulletin of Earthquake Engineering, 2018, 16, 2633-2640.	2.3	1
102	Latin American and Caribbean earthquakes in the GEM's Earthquake Consequences Database (GEMECD). Natural Hazards, 2018, 93, 113-125.	1.6	1
103	Earthquake magnitude exceedance rate and self-similarity. Earthquake Engineering and Structural Dynamics, 1989, 18, 1017-1023.	2.5	0
104	Reply to Authors on "Assessment of earthquake damage considering the characteristics of past events in South America― Soil Dynamics and Earthquake Engineering, 2018, 104, 154-155.	1.9	0
105	Discussion of "Joint Maximum Likelihood Estimators for Gutenberg-Richter Parameters λO and β Using Subcatalogs― Earthquake Spectra, 2019, 35, 1059-1059.	1.6	0
106	Drosophila is a Reliable Biomonitor of Water Pollution. , 2001, , 257-299.		0
107	Reply to "Comment on 'Estimation of Ground Motion in Mexico City from a Repeat of the MÂ7.0 Acambay Earthquake of 1912' by S. K. Singh, A. Iglesias, M. Ordaz, X. Perez-Campos, and L. Quintanar" by M. Suter. Bulletin of the Seismological Society of America, 2014, 104, 2565-2566.	1.1	0
108	Propagation of epistemic uncertainty in magnitude–frequency relations through PSHA using predictive distributions. Earthquake Spectra, 0, , 875529302110552.	1.6	0