
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2539618/publications.pdf Version: 2024-02-01

<u> Silvia Fadã</u> @

#	Article	IF	CITATIONS
1	Extracellular Vesicles in Musculoskeletal Regeneration: Modulating the Therapy of the Future. Cells, 2022, 11, 43.	4.1	10
2	Current Advances in the Regeneration of Degenerated Articular Cartilage: A Literature Review on Tissue Engineering and Its Recent Clinical Translation. Materials, 2022, 15, 31.	2.9	11
3	An Osteosarcoma Model by 3D Printed Polyurethane Scaffold and In Vitro Generated Bone Extracellular Matrix. Cancers, 2022, 14, 2003.	3.7	14
4	Smart Methylcellulose Hydrogels for pH-Triggered Delivery of Silver Nanoparticles. Gels, 2022, 8, 298.	4.5	13
5	Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials. Tissue Engineering - Part B: Reviews, 2021, 27, 486-513.	4.8	47
6	Graphene nanoplatelets composite membranes for thermal comfort enhancement in performance textiles. Journal of Applied Polymer Science, 2021, 138, 49645.	2.6	13
7	Assessment of the in vivo biofunctionality of a biomimetic hybrid scaffold for osteochondral tissue regeneration. Biotechnology and Bioengineering, 2021, 118, 465-480.	3.3	8
8	Antibacterial, pro-angiogenic and pro-osteointegrative zein-bioactive glass/copper based coatings for implantable stainless steel aimed at bone healing. Bioactive Materials, 2021, 6, 1479-1490.	15.6	54
9	Double-stage discretization approaches for biomarker-based bladder cancer survival modeling. Communications in Applied and Industrial Mathematics, 2021, 12, 29-47.	0.3	0
10	Antioxidant Activity of Silica-Based Bioactive Glasses. ACS Biomaterials Science and Engineering, 2021, 7, 2309-2316.	5.2	11
11	Tellurium: A new active element for innovative multifunctional bioactive glasses. Materials Science and Engineering C, 2021, 123, 111957.	7.3	17
12	Mesoporous zirconia surfaces with anti-biofilm properties for dental implants. Biomedical Materials (Bristol), 2021, 16, 045016.	3.3	6
13	3D Bioprinting Allows the Establishment of Long-Term 3D Culture Model for Chronic Lymphocytic Leukemia Cells. Frontiers in Immunology, 2021, 12, 639572.	4.8	26
14	Chemically Crosslinked Methylcellulose Substrates for Cell Sheet Engineering. Gels, 2021, 7, 141.	4.5	11
15	Post Forming Analysis and In Vitro Biological Characterization of AZ31B Processed by Incremental Forming and Coated With Electrospun Polycaprolactone. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021, 143, .	2.2	5
16	Graphene nanoplatelets can improve the performances of graphene oxide – polyaniline composite gas sensing aerogels. Carbon Trends, 2021, 5, 100123.	3.0	5
17	Generation of cytocompatible superhydrophobic Zr–Cu–Ag metallic glass coatings with antifouling properties for medical textiles. Materials Today Bio, 2021, 12, 100148.	5.5	15
18	Osteosynthesis devices in absorbable Magnesium alloy in comparison to standard ones: a Systematic Review on effectiveness and safety. Acta Biomedica, 2021, 92, e2021025.	0.3	2

#	Article	IF	CITATIONS
19	3D Bioprinting of Pectin-Cellulose Nanofibers Multicomponent Bioinks. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732689.	4.1	19
20	Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering. Biofabrication, 2020, 12, 025001.	7.1	64
21	TEMPO-Nanocellulose/Ca2+ Hydrogels: Ibuprofen Drug Diffusion and In Vitro Cytocompatibility. Materials, 2020, 13, 183.	2.9	37
22	Advances in cartilage repair: The influence of inorganic clays to improve mechanical and healing properties of antibacterial Gellan gum-Manuka honey hydrogels. Materials Science and Engineering C, 2020, 108, 110444.	7.3	29
23	Microfluidic bioprinting towards a renal in vitro model. Bioprinting, 2020, 20, e00108.	5.8	20
24	A Multilayered Edible Coating to Extend Produce Shelf Life. ACS Sustainable Chemistry and Engineering, 2020, 8, 14312-14321.	6.7	46
25	Enhancing Mechanical Properties and Biological Performances of Injectable Bioactive Glass by Gelatin and Chitosan for Bone Small Defect Repair. Biomedicines, 2020, 8, 616.	3.2	22
26	Topographical and Biomechanical Guidance of Electrospun Fibers for Biomedical Applications. Polymers, 2020, 12, 2896.	4.5	29
27	Evaluation of the subtle trade-off between physical stability and thermo-responsiveness in crosslinked methylcellulose hydrogels. Soft Matter, 2020, 16, 5577-5587.	2.7	12
28	From the sea to the bee: Gellan gum-honey-diatom composite to deliver resveratrol for cartilage regeneration under oxidative stress conditions. Carbohydrate Polymers, 2020, 245, 116410.	10.2	18
29	Evaluation of Nisin and LL-37 Antimicrobial Peptides as Tool to Preserve Articular Cartilage Healing in a Septic Environment. Frontiers in Bioengineering and Biotechnology, 2020, 8, 561.	4.1	17
30	Plant Tissues as 3D Natural Scaffolds for Adipose, Bone and Tendon Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 723.	4.1	60
31	In vitro cell delivery by gelatin microspheres prepared in water-in-oil emulsion. Journal of Materials Science: Materials in Medicine, 2020, 31, 26.	3.6	14
32	Electron Beam Structuring of Ti6Al4V: New Insights on the Metal Surface Properties Influencing the Bacterial Adhesion. Materials, 2020, 13, 409.	2.9	13
33	Electrophoretic processing of chitosan based composite scaffolds with Nb-doped bioactive glass for bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 2020, 31, 43.	3.6	20
34	Tripolyphosphate-Crosslinked Chitosan/Gelatin Biocomposite Ink for 3D Printing of Uniaxial Scaffolds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 400.	4.1	46
35	Data on the influence of inorganic clays to improve mechanical and healing properties of antibacterial Gellan gum-Manuka honey hydrogels. Data in Brief, 2020, 28, 105096.	1.0	3
36	Characterization of gelatin hydrogels derived from different animal sources. Materials Letters, 2020, 272, 127865.	2.6	20

1

#	Article	IF	CITATIONS
37	In-situ Raman spectroscopy: An effective technique for the quantification of LCST transition of methylcellulose hydrogels. Materials Letters, 2020, 274, 128011.	2.6	8
38	Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 465.	4.1	165
39	Additive Manufacturing Approaches for Hydroxyapatiteâ€Reinforced Composites. Advanced Functional Materials, 2019, 29, 1903055.	14.9	109
40	Cross-Linking Strategies for Electrospun Gelatin Scaffolds. Materials, 2019, 12, 2476.	2.9	154
41	Single Point Incremental Forming and Electrospinning to produce biodegradable magnesium (AZ31) biomedical prostheses coated with porous PCL. Materials Today: Proceedings, 2019, 7, 394-401.	1.8	12
42	Biological activity of human mesenchymal stromal cells on polymeric electrospun scaffolds. Biomaterials Science, 2019, 7, 1088-1100.	5.4	20
43	Periodontitis Stage III–IV, Grade C and Correlated Factors: A Histomorphometric Study. Biomedicines, 2019, 7, 43.	3.2	2
44	Cytocompatible and Anti-bacterial Adhesion Nanotextured Titanium Oxide Layer on Titanium Surfaces for Dental and Orthopedic Implants. Frontiers in Bioengineering and Biotechnology, 2019, 7, 103.	4.1	64
45	Metallurgical Gallium Additions to Titanium Alloys Demonstrate a Strong Time-Increasing Antibacterial Activity without any Cellular Toxicity. ACS Biomaterials Science and Engineering, 2019, 5, 2815-2820.	5.2	46
46	Electrophoretic bottom up design of chitosan patches for topical drug delivery. Journal of Materials Science: Materials in Medicine, 2019, 30, 40.	3.6	10
47	Modulable properties of PVA/cellulose fiber composites. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001983122.	1.6	10
48	Thermomechanical and in vitro biological characterization of injection-molded PLGA craniofacial plates. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001983159.	1.6	6
49	Mechanical Properties of Materials. , 2019, , 105-136.		8
50	Organization, Structure, and Properties of Materials. , 2019, , 3-103.		23
51	Manufacturing Technologies. , 2019, , 137-196.		11
52	Biomaterials and Applications. , 2019, , 199-287.		22
53	Sterilization and Degradation. , 2019, , 289-328.		1

54 Interactions Between Biomaterials and the Physiological Environment., 2019,, 329-391.

4

#	Article	IF	CITATIONS
55	Techniques of Analysis. , 2019, , 393-469.		5
56	Advanced Applications. , 2019, , 471-545.		0
57	Bacterial Nanocellulose and Its Surface Modification by Glycidyl Methacrylate and Ethylene Glycol Dimethacrylate. Incorporation of Vancomycin and Ciprofloxacin. Nanomaterials, 2019, 9, 1668.	4.1	22
58	Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomaterialia, 2019, 87, 61-75.	8.3	65
59	Bactericidal activity of gallium-doped chitosan coatings against staphylococcal infection. Journal of Applied Microbiology, 2019, 126, 87-101.	3.1	15
60	Chemically crosslinked gelatin hydrogels as scaffolding materials for adipose tissue engineering. Journal of Applied Polymer Science, 2019, 136, 47104.	2.6	28
61	Biopolymer-based strategies in the design of smart medical devices and artificial organs. International Journal of Artificial Organs, 2018, 41, 337-359.	1.4	54
62	Immunological and Differentiation Properties of Amniotic Cells Are Retained After Immobilization in Pectin Gel. Cell Transplantation, 2018, 27, 70-76.	2.5	9
63	Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Materials Science and Engineering C, 2018, 82, 130-140.	7.3	76
64	Oral Dysbiosis in Pancreatic Cancer and Liver Cirrhosis: A Review of the Literature. Biomedicines, 2018, 6, 115.	3.2	53
65	Data on Manuka Honey/Gellan Gum composite hydrogels for cartilage repair. Data in Brief, 2018, 20, 831-839.	1.0	11
66	3D printing of methylcellulose-based hydrogels. Bioprinting, 2018, 10, e00024.	5.8	45
67	Antibacterial effectiveness meets improved mechanical properties: Manuka honey/gellan gum composite hydrogels for cartilage repair. Carbohydrate Polymers, 2018, 198, 462-472.	10.2	55
68	Crosslinked gelatin hydrogels as carriers for controlled heparin release. Materials Letters, 2018, 228, 375-378.	2.6	22
69	Copper-Doped Bioactive Glass as Filler for PMMA-Based Bone Cements: Morphological, Mechanical, Reactivity, and Preliminary Antibacterial Characterization. Materials, 2018, 11, 961.	2.9	38
70	3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering. Materials, 2018, 11, 579.	2.9	54
71	Biofilm Removal and Bacterial Re-Colonization Inhibition of a Novel Erythritol/Chlorhexidine Air-Polishing Powder on Titanium Disks. Materials, 2018, 11, 1510.	2.9	19
72	Fabrication of photothermally active poly(vinyl alcohol) films with gold nanostars for antibacterial applications. Beilstein Journal of Nanotechnology, 2018, 9, 2040-2048.	2.8	30

#	Article	IF	CITATIONS
73	Electrospun silk fibroin–gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration. Journal of Materials Science: Materials in Medicine, 2017, 28, 80.	3.6	40
74	Biomimetic coating of crossâ€linked gelatin to improve mechanical and biological properties of electrospun PET: A promising approach for small caliber vascular graft applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 2405-2415.	4.0	24
75	Bioreactor mechanically guided 3D mesenchymal stem cell chondrogenesis using a biocompatible novel thermo-reversible methylcellulose-based hydrogel. Scientific Reports, 2017, 7, 45018.	3.3	77
76	Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis. Acta Biomaterialia, 2017, 63, 306-316.	8.3	58
77	Thermo-responsive properties of methylcellulose hydrogels for cell sheet engineering. Materials Letters, 2017, 207, 157-160.	2.6	57
78	Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication, 2017, 9, 031001.	7.1	121
79	Ibuprofen-loaded PCL meshes manufactured using rapid tooling for ocular orbital repair. Polymer Testing, 2017, 62, 33-40.	4.8	3
80	Structure and properties of polycaprolactone/ibuprofen rods prepared by melt extrusion for implantable drug delivery. Polymer Bulletin, 2017, 74, 4973-4987.	3.3	19
81	Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomaterialia, 2017, 59, 303-316.	8.3	33
82	Novel class of collector in electrospinning device for the fabrication of 3D nanofibrous structure for large defect loadâ€bearing tissue engineering application. Journal of Biomedical Materials Research - Part A, 2017, 105, 1535-1548.	4.0	34
83	Engineering Thermoplastics for Additive Manufacturing: A Critical Perspective with Experimental Evidence to Support Functional Applications. Journal of Applied Biomaterials and Functional Materials, 2017, 15, 10-18.	1.6	67
84	Bio-Instructive Scaffolds for Muscle Regeneration. , 2017, , 161-186.		1
85	Dynamico-mechanical characterization of polymer biomaterials. , 2017, , 203-232.		5
86	Biological effects of combined resveratrol and vitamin D3 on ovarian tissue. Journal of Ovarian Research, 2017, 10, 61.	3.0	23
87	Alternating Air-Medium Exposure in Rotating Bioreactors Optimizes Cell Metabolism in 3D Novel Tubular Scaffold Polyurethane Foams. Journal of Applied Biomaterials and Functional Materials, 2017, 15, 122-132.	1.6	4
88	"Traditional―polymer medical devices: Ex vivo analysis. , 2017, , 367-396.		0
89	Poly-Paper: A Sustainable Material for Packaging, Based on Recycled Paper and Recyclable with Paper. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 490-495.	1.6	6
90	Hierarchic micro-patterned porous scaffolds via electrochemical replica-deposition enhance neo-vascularization. Biomedical Materials (Bristol), 2016, 11, 025018.	3.3	27

#	Article	IF	CITATIONS
91	The effect of polyurethane scaffold surface treatments on the adhesion of chondrocytes subjected to interstitial perfusion culture. Tissue Engineering and Regenerative Medicine, 2016, 13, 364-374.	3.7	8
92	Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication. Journal of Materials Science: Materials in Medicine, 2016, 27, 95.	3.6	51
93	Nano/Micro Hybrid Scaffold of PCL or P3HB Nanofibers Combined with Silk Fibroin for Tendon and Ligament Tissue Engineering. Journal of Applied Biomaterials and Functional Materials, 2015, 13, 156-168.	1.6	59
94	Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Materials Science and Engineering C, 2015, 54, 101-111.	7.3	134
95	Biomimetic hybrid scaffolds for osteo-chondral tissue repair: Design and osteogenic differentiation of human placenta-derived cells (hPDC). , 2015, 2015, 1753-6.		3
96	Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility. Materials Science and Engineering C, 2015, 53, 95-103.	7.3	42
97	Exploiting novel sterilization techniques for porous polyurethane scaffolds. Journal of Materials Science: Materials in Medicine, 2015, 26, 182.	3.6	22
98	Shape-memory polyurethane cellular solids for minimally invasive surgical procedures. , 2015, , 133-156.		3
99	Programmed cell delivery from biodegradable microcapsules for tissue repair. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1002-1012.	3.5	15
100	Stem cell augmented mesh materials: an in vitro and in vivo study. International Urogynecology Journal, 2015, 26, 675-683.	1.4	11
101	Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration. ISRN Vascular Medicine, 2014, 2014, 1-27.	0.7	98
102	Modeling and Experimental Studies of Peeling of Polymer Coating for Biodegradable Magnesium Alloy Stents. Rare Metal Materials and Engineering, 2014, 43, 2877-2882.	0.8	9
103	Alternative technique for calcium phosphate coating on titanium alloy implants. Biomatter, 2014, 4, e28534.	2.6	13
104	Development of biodegradable magnesium alloy stents with coating. Frattura Ed Integrita Strutturale, 2014, 8, 364-375.	0.9	4
105	Design of 2D chitosan scaffolds via electrochemical structuring. Biomatter, 2014, 4, e29506.	2.6	10
106	Adipose-derived stem cells could sense the nano-scale cues as myogenic-differentiating factors. Journal of Materials Science: Materials in Medicine, 2013, 24, 2439-2447.	3.6	17
107	In vitro study on silk fibroin textile structure for Anterior Cruciate Ligament regeneration. Materials Science and Engineering C, 2013, 33, 3601-3608.	7.3	40
108	Controlling dynamic mechanical properties and degradation of composites for bone regeneration by means of filler content. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 162-172.	3.1	25

#	Article	IF	CITATIONS
109	Influence of polymer molecular weight in osteoinductive composites for bone tissue regeneration. Acta Biomaterialia, 2013, 9, 9401-9413.	8.3	30
110	Biomimetic calcium–phosphates produced by an auto-catalytic route on stainless steel 316L and bio-inert polyolefin. RSC Advances, 2013, 3, 11255.	3.6	13
111	<i>In vivo</i> Regeneration of Elastic Lamina on Fibroin Biodegradable Vascular Scaffold. International Journal of Artificial Organs, 2013, 36, 166-174.	1.4	40
112	Development of bioabsorbable PCL/ibuprofen mesh for maxillofacial repair using prototype injection mold. , 2013, , 355-359.		0
113	Adipose-derived adult stem cells: available technologies for potential clinical regenerative applications in dentistry. Critical Reviews in Biomedical Engineering, 2013, 41, 483-93.	0.9	3
114	Preparation and Characterization of Shape Memory Polymer Scaffolds via Solvent Casting/Particulate Leaching. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 119-126.	1.6	26
115	Collagenâ€Reinforced Electrospun Silk Fibroin Tubular Construct as Small Calibre Vascular Graft. Macromolecular Bioscience, 2012, 12, 1566-1574.	4.1	65
116	Effects of the Magnetic Resonance Field on Breast Tissue Expanders. Aesthetic Plastic Surgery, 2012, 36, 901-907.	0.9	18
117	Plant Products for Innovative Biomaterials in Dentistry. Coatings, 2012, 2, 179-194.	2.6	14
118	Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 2641-2650.	3.6	28
119	Trends in biomedical engineering: focus on Smart Bio-Materials and Drug Delivery. Journal of Applied Biomaterials and Biomechanics, 2011, 9, 87-97.	0.4	9
120	Degradable polymers may improve dental practice. Journal of Applied Biomaterials and Biomechanics, 2011, 9, 223-231.	0.4	17
121	Shape memory polymer cellular solid design for medical applications. Smart Materials and Structures, 2011, 20, 035004.	3.5	39
122	Assessment of scaffold porosity: the new route of micro-CT. Journal of Applied Biomaterials and Biomechanics, 2011, 9, 165-175.	0.4	27
123	Trends in biomedical engineering: focus on Regenerative Medicine. Journal of Applied Biomaterials and Biomechanics, 2011, 9, 73-86.	0.4	11
124	Structural properties of polysaccharide-based microcapsules for soft tissue regeneration. Journal of Materials Science: Materials in Medicine, 2010, 21, 365-375.	3.6	39
125	Ability of polyurethane foams to support placenta-derived cell adhesion and osteogenic differentiation: preliminary results. Journal of Materials Science: Materials in Medicine, 2010, 21, 1005-1011.	3.6	28
126	Chemico-physical modifications induced by plasma and ozone sterilizations on shape memory polyurethane foams. Journal of Materials Science: Materials in Medicine, 2010, 21, 2067-2078.	3.6	32

#	Article	IF	CITATIONS
127	Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development. Acta Biomaterialia, 2010, 6, 1948-1957.	8.3	95
128	Compliant electrospun silk fibroin tubes for small vessel bypass grafting. Acta Biomaterialia, 2010, 6, 4019-4026.	8.3	147
129	Microcontact Printing of Fibronectin on a Biodegradable Polymeric Surface for Skeletal Muscle Cell Orientation. International Journal of Artificial Organs, 2010, 33, 535-543.	1.4	50
130	Shape memory polymer foams for cerebral aneurysm reparation: Effects of plasma sterilization on physical properties and cytocompatibility. Acta Biomaterialia, 2009, 5, 1508-1518.	8.3	62
131	Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts. Acta Biomaterialia, 2009, 5, 1126-1136.	8.3	58
132	Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Review of Medical Devices, 2009, 6, 533-551.	2.8	82
133	Electrospun silk fibroin tubular matrixes for small vessel bypass grafting. Materials Technology, 2009, 24, 52-57.	3.0	13
134	Scaffolds based on hyaluronan crosslinked with a polyaminoacid: Novel candidates for tissue engineering application. Journal of Biomedical Materials Research - Part A, 2008, 87A, 770-779.	4.0	10
135	Electrospun Silk Fibroin Mats for Tissue Engineering. Engineering in Life Sciences, 2008, 8, 219-225.	3.6	71
136	Ex-vivo characterization of three Björk-Shiley Delrin heart valves. Journal of Heart Valve Disease, 2008, 17, 325-31.	0.5	1
137	Different Processing Methods to Obtain Porous Structure in Shape Memory Polymers. Materials Science Forum, 2007, 539-543, 663-668.	0.3	6
138	New heparinizable modified poly(carbonate urethane) surfaces diminishing bacterial colonization. Journal of Materials Science: Materials in Medicine, 2007, 18, 2109-2115.	3.6	11
139	Intermittent exposure to ethanol vapor affects osteoblast behaviour more severely than estrogen deficiency does. Toxicology, 2007, 237, 168-176.	4.2	18
140	Bioabsorbable scaffold forÂinÂsitu bone regeneration. Biomedicine and Pharmacotherapy, 2006, 60, 386-392.	5.6	12
141	In vitrointeraction of human fibroblasts and platelets with a shape-memory polyurethane. Journal of Biomedical Materials Research - Part A, 2005, 73A, 1-11.	4.0	46
142	Materials Characterization of Explanted Mechanical Heart Valves and Comparison to Patients' Clinical Data. International Journal of Artificial Organs, 2005, 28, 701-710.	1.4	2
143	Advanced Polyurethanes for Blood Contacting Applications Containing Pime as "Smart― Heparin-Adsorbing Moieties. , 2004, , 51-66.		2
144	Design, synthesis and properties of polyurethane hydrogels for tissue engineering. Journal of Materials Science: Materials in Medicine, 2003, 14, 683-686.	3.6	67

#	Article	IF	CITATIONS
145	Silk Fibroin-Coated Three-Dimensional Polyurethane Scaffolds for Tissue Engineering: Interactions with Normal Human Fibroblasts. Tissue Engineering, 2003, 9, 1113-1121.	4.6	61
146	Cytocompatibility of polyurethane foams as biointegrable matrices for the preparation of scaffolds for bone reconstruction. Journal of Applied Biomaterials and Biomechanics, 2003, 1, 58-66.	0.4	6
147	In Vitro Interactions of Biomedical Polyurethanes with Macrophages and Bacterial Cells. Journal of Biomaterials Applications, 2002, 16, 191-214.	2.4	15
148	In Vitro Stability of Polyether and Polycarbonate Urethanes. Journal of Biomaterials Applications, 2000, 14, 325-348.	2.4	49
149	In vitro Stability of Polyether and Polycarbonate Urethanes. Journal of Biomaterials Applications, 2000, 14, 325-348.	2.4	32
150	Polyurethane-maleamides for cardiovascular applications: synthesis and properties. Journal of Materials Science: Materials in Medicine, 1999, 10, 711-714.	3.6	5
151	Synergistic effects of oxidative environments and mechanical stress onin vitro stability of polyetherurethanes and polycarbonateurethanes. Journal of Biomedical Materials Research Part B, 1999, 45, 62-74.	3.1	53
152	The Effect of Surface Roughness on Early In Vivo Plaque Colonization on Titanium. Journal of Periodontology, 1997, 68, 556-562.	3.4	210
153	The Biofilm Formation onto Implants and Prosthetic Materials May Be Contrasted Using Gallium (3+). Key Engineering Materials, 0, 587, 315-320.	0.4	7
154	2D and 3D Electrospun Silk Fibroin Gelatin Coatings to Improve Scaffold Performances in Cardiovascular Applications. , 0, , .		2
155	Effects of polyol composition on physico-morphological and mechanical properties of polyurethane foams . , 0, , .		0
156	Functionalization of PU Foams via Inorganic and Organic Coatings to Improve Cell and Tissue Interactions. , 0, , .		0