Angela A Pirri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2539467/publications.pdf

Version: 2024-02-01

430874 526287 38 735 18 27 citations g-index h-index papers 38 38 38 572 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhancing the yield of high-order harmonics with an array of gas jets. Physical Review A, 2008, 78, .	2.5	88
2	High-efficiency, high-power and low threshold Yb^3+:YAG ceramic laser. Optics Express, 2009, 17, 23344.	3.4	48
3	Direct Interferometric Measurement of the Atomic Dipole Phase in High-Order Harmonic Generation. Physical Review Letters, 2006, 97, 023901.	7.8	41
4	An Overview on Yb-Doped Transparent Polycrystalline Sesquioxide Laser Ceramics. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	2.9	38
5	Integrated analysis of non-linear loss mechanisms in Yb:YAG ceramics for laser applications. Journal of the European Ceramic Society, 2012, 32, 2273-2281.	5.7	37
6	Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders. Journal of Advanced Ceramics, 2020, 9, 674-682.	17.4	34
7	Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics. Optics Express, 2010, 18, 17262.	3.4	33
8	First laser oscillation and broad tunability of 1  at % Yb-doped Sc_2O_3 and Lu_2O_3 ceramics. Optics Letters, 2011, 36, 4284.	3.3	33
9	Preparation and characterization of Yb-doped YAG ceramics. Optical Materials, 2013, 35, 798-803.	3.6	31
10	Transparent laser ceramics by stereolithography. Scripta Materialia, 2020, 187, 194-196.	5.2	31
11	Fabrication and laser operation of Yb:Lu ₂ O ₃ transparent ceramics from coâ€precipitated nanoâ€powders. Journal of the American Ceramic Society, 2019, 102, 7491-7499.	3.8	28
12	Direct Comparison of Yb^3+:CaF_2 and heavily doped Yb^3+:YLF as laser media at room temperature. Optics Express, 2009, 17, 18312.	3.4	27
13	Tunability enhancement of Yb:YLF based laser. Optics Express, 2010, 18, 2236.	3.4	27
14	First laser emission of Yb_015:(Lu_05Y_05)_3Al_5O_12 ceramics. Optics Express, 2016, 24, 9611.	3.4	22
15	Characterization of Yb:YAG ceramics as laser media. Optical Materials, 2010, 33, 205-210.	3.6	21
16	Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders. Journal of the European Ceramic Society, 2018, 38, 1632-1638.	5.7	21
17	High efficiency laser action in mildly doped Yb:LuYAG ceramics. Optical Materials, 2017, 73, 312-318.	3.6	20
18	Spectroscopy and CW first laser operation of Yb-doped Gd_3(Al_05Ga_05)_5O_12 crystal. Optical Materials Express, 2017, 7, 170.	3.0	19

#	Article	IF	CITATIONS
19	Spectroscopic and laser characterization of Yb_015:(Lu_xY_1-x)_3Al_5O_12 ceramics with different Lu/Y balance. Optics Express, 2016, 24, 17832.	3.4	18
20	A Comprehensive Characterization of a 10 at.% Yb:YSAG Laser Ceramic Sample. Materials, 2018, 11, 837.	2.9	17
21	Fabrication, microstructure, and optical properties of Yb:Y ₃ ScAl ₄ O ₁₂ transparent ceramics with different doping levels. Journal of the American Ceramic Society, 2020, 103, 224-234.	3.8	16
22	Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal. Optics Express, 2014, 22, 4038.	3.4	15
23	Extreme-ultraviolet Ramsey-type spectroscopy. Physical Review A, 2008, 78, .	2.5	14
24	Fabrication and laser performances of Yb:Sc2O3 transparent ceramics from different combination of vacuum sintering and hot isostatic pressing conditions. Journal of the European Ceramic Society, 2020, 40, 881-886.	5.7	13
25	Characterization of the lasing properties of a 5%Yb doped Lu_2SiO_5 crystal along its three principal dielectric axes. Optics Express, 2015, 23, 13210.	3.4	12
26	High efficiency laser action of 1% at Yb^3+:Sc_2O_3 ceramic. Optics Express, 2012, 20, 22134.	3.4	9
27	Polycrystalline Yb ³⁺ â€"Er ³⁺ -co-doped YAG: Fabrication, TEM-EDX characterization, spectroscopic properties, and comparison with the single crystal. Journal of Materials Research, 2014, 29, 2288-2296.	2.6	9
28	Microstructure and laser emission of Yb:CaF2 transparent ceramics fabricated by air pre-sintering and hot isostatic pressing. Optical Materials, 2022, 129, 112540.	3.6	4
29	Laser and optical properties of Yb:YAG ceramics with layered doping distribution: design, characterization and evaluation of different production processes. Proceedings of SPIE, 2016, , .	0.8	3
30	Yb-doped YLF and CaF2 crystal laser at room temperature. Optical Materials, 2010, 33, 200-204.	3.6	2
31	Specifics of Spectroscopic Features of Yb 3+ â€Doped Lu 2 O 3 Laser Transparent Ceramics. Physica Status Solidi (B): Basic Research, 0, , 2100521.	1.5	2
32	Laser Performance of 1% at. Yb : Lu2O3 Ceramic. Advances in Optical Technologies, 2012, 2012, 1-7.	0.8	1
33	First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics., 2016,,.		1
34	First Interferometric Measurement of the Atomic Dipole Phase in High-Order Harmonic Generation. Acta Physica Hungarica A Heavy Ion Physics, 2006, 26, 343-350.	0.4	0
35	Diode-Pumped Yb[sup 3+]:YLF and Yb[sup 3+]:CaF[sub 2] Laser Performance., 2010,,.		0
36	Graded Yb:YAG ceramic structures: design, fabrication and characterization of the laser performances. , 2015, , .		0

#	Article	IF	CITATIONS
37	Yb:Lu2SiO5crystal: characterization of the laser emission along the three dielectric axes., 2015,,.		o
38	First laser oscillation of 1% at Yb:Sc2O3 and Yb:Lu2O3 ceramics. , 2012, , .		0