
Penelope A Hancock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/253935/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Modelling spatiotemporal trends in the frequency of genetic mutations conferring insecticide target-site resistance in African mosquito malaria vector species. BMC Biology, 2022, 20, 46.	1.7	8
2	An increasing role of pyrethroid-resistant Anopheles funestus in malaria transmission in the Lake Zone, Tanzania. Scientific Reports, 2021, 11, 13457.	1.6	25
3	Predicting non-state terrorism worldwide. Science Advances, 2021, 7, .	4.7	15
4	Global estimation of anti-malarial drug effectiveness for the treatment of uncomplicated Plasmodium falciparum malaria 1991–2019. Malaria Journal, 2020, 19, 374.	0.8	18
5	Evaluating insecticide resistance across African districts to aid malaria control decisions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22042-22050.	3.3	45
6	Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biology, 2020, 18, e3000633.	2.6	92
7	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. PLoS Computational Biology, 2020, 16, e1007446.	1.5	20
8	Mapping trends in insecticide resistance phenotypes in African malaria vectors. , 2020, 18, e3000633.		0
9	Mapping trends in insecticide resistance phenotypes in African malaria vectors. , 2020, 18, e3000633.		Ο
10	Mapping trends in insecticide resistance phenotypes in African malaria vectors. , 2020, 18, e3000633.		0
11	Mapping trends in insecticide resistance phenotypes in African malaria vectors. , 2020, 18, e3000633.		Ο
12	Mapping trends in insecticide resistance phenotypes in African malaria vectors. , 2020, 18, e3000633.		0
13	Mapping trends in insecticide resistance phenotypes in African malaria vectors. , 2020, 18, e3000633.		0
14	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
15	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
16	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
17	Vector bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecology. , 2020, 16, e1007446.		0
18	Analysis-ready datasets for insecticide resistance phenotype and genotype frequency in African malaria vectors. Scientific Data, 2019, 6, 121.	2.4	25

Penelope A Hancock

#	Article	IF	CITATIONS
19	Predicting the spatial dynamics of <i>Wolbachia</i> infections in <i>Aedes aegypti</i> arbovirus vector populations in heterogeneous landscapes. Journal of Applied Ecology, 2019, 56, 1674-1686.	1.9	16
20	Mapping Geospatial Processes Affecting the Environmental Fate of Agricultural Pesticides in Africa. International Journal of Environmental Research and Public Health, 2019, 16, 3523.	1.2	10
21	Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5938-5943.	3.3	45
22	Densityâ€dependent population dynamics in <i>Aedes aegypti</i> slow the spread of <scp><i>w</i>M</scp> el <i>Wolbachia</i> . Journal of Applied Ecology, 2016, 53, 785-793.	1.9	66
23	Predicting Wolbachia invasion dynamics in Aedes aegypti populations using models of density-dependent demographic traits. BMC Biology, 2016, 14, 96.	1.7	50
24	The potential for fungal biopesticides to reduce malaria transmission under diverse environmental conditions. Journal of Applied Ecology, 2015, 52, 1558-1566.	1.9	18
25	Strategies for Controlling Non-Transmissible Infection Outbreaks Using a Large Human Movement Data Set. PLoS Computational Biology, 2014, 10, e1003809.	1.5	6
26	Modelling the spread of <i>Wolbachia</i> in spatially heterogeneous environments. Journal of the Royal Society Interface, 2012, 9, 3045-3054.	1.5	40
27	Modelling the effect of temperature variation on the seasonal dynamics of Ixodes ricinus tick populations. International Journal for Parasitology, 2011, 41, 513-522.	1.3	57
28	Population Dynamic Models of the Spread of <i>Wolbachia</i> . American Naturalist, 2011, 177, 323-333.	1.0	101
29	Strategies for Introducing Wolbachia to Reduce Transmission of Mosquito-Borne Diseases. PLoS Neglected Tropical Diseases, 2011, 5, e1024.	1.3	103
30	Combining Fungal Biopesticides and Insecticide-Treated Bednets to Enhance Malaria Control. PLoS Computational Biology, 2009, 5, e1000525.	1.5	41
31	Application of the lumped age-class technique to studying the dynamics of malaria-mosquito-human interactions. Malaria Journal, 2007, 6, 98.	0.8	36
32	Modelling the many-wrongs principle: The navigational advantages of aggregation in nomadic foragers. Journal of Theoretical Biology, 2006, 240, 302-310.	0.8	24