Raul Ferrer-Gallego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2538870/publications.pdf

Version: 2024-02-01

41 papers

1,115 citations

430874 18 h-index 395702 33 g-index

41 all docs

41 docs citations

41 times ranked

1269 citing authors

#	Article	IF	CITATIONS
1	Phenolic Composition, Quality and Authenticity of Grapes and Wines by Vibrational Spectroscopy. Food Reviews International, 2022, 38, 884-912.	8.4	11
2	Influence of different types of LEDs lights on the formation of volatile sulfur compounds in white and rosé wines. Food Chemistry, 2022, 371, 131144.	8.2	1
3	Feasibility study on the use of ATR-FTIR spectroscopy as a tool for the estimation of wine polysaccharides. Carbohydrate Polymers, 2022, 287, 119365.	10.2	15
4	Nomenclatural notes on the Mediterranean firs (Abies, Pinaceae). Phytotaxa, 2022, 549, 31-50.	0.3	2
5	Preliminary study of the effect of cation-exchange resin treatment on the aging of tempranillo red wines. LWT - Food Science and Technology, 2021, 138, 110669.	5. 2	5
6	Effect of the Addition of Non-Saccharomyces at First Alcoholic Fermentation on the Enological Characteristics of Cava Wines. Fermentation, 2021, 7, 64.	3.0	3
7	White wine processing by UHPH without SO2. Elimination of microbial populations and effect in oxidative enzymes, colloidal stability and sensory quality. Food Chemistry, 2020, 332, 127417.	8.2	23
8	Phenolic metabolites from 5,000-year-old coprolites of Myotragus balearicus, an extinct insular bovid. Quaternary International, 2020, 554, 143-149.	1.5	0
9	Fractionation of Nanoparticle Matter in Red Wines Using Asymmetrical Flow Field-Flow Fractionation. Journal of Agricultural and Food Chemistry, 2020, 68, 14564-14576.	5.2	7
10	Influence of the oxidation in the aromatic composition and sensory profile of Rioja red aged wines. European Food Research and Technology, 2020, 246, 1167-1181.	3.3	7
11	Aromatic Potential and Bioactivity of Cork Stoppers and Cork By-Products. Foods, 2020, 9, 133.	4.3	19
12	Determination of Nutrient Supplementation by Means of ATR-FTIR Spectroscopy during Wine Fermentation. Fermentation, 2019, 5, 58.	3.0	4
13	(2682) Proposal to conserve the name <i>Vitis sylvestris</i> C.C. Gmel. (<i>Vitaceae</i>) against <i>V</i> . <i>sylvestris</i> W. Bartram. Taxon, 2019, 68, 409-410.	0.7	4
14	Wild Yeast and Lactic Acid Bacteria of Wine. , 2019, , .		5
15	Monitoring the effects and side-effects on wine colour and flavonoid composition of the combined post-fermentative additions of seeds and mannoproteins. Food Research International, 2019, 126, 108650.	6.2	20
16	Effects of fertigation by elicitors enriched in amino acids from vegetal and animal origins on Syrah plant gas exchange and grape quality. Food Research International, 2019, 125, 108630.	6.2	9
17	Specific profile of Tempranillo grapevines related to Esca-leaf symptoms and climate conditions. Plant Physiology and Biochemistry, 2019, 135, 575-587.	5.8	15
18	Effect of grape juice composition and nutrient supplementation on the production of sulfur dioxide and carboxylic compounds by Saccharomyces cerevisiae. Australian Journal of Grape and Wine Research, 2018, 24, 260-266.	2.1	7

#	Article	IF	Citations
19	Study of human salivary proline-rich proteins interaction with food tannins. Food Chemistry, 2018, 243, 175-185.	8.2	43
20	Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations. Journal of Agricultural and Food Chemistry, 2017, 65, 6434-6441.	5.2	23
21	Evaluation of Tempranillo and Albari $ ilde{A}\pm o$ SO 2 -free wines produced by different chemical alternatives and winemaking procedures. Food Research International, 2017, 102, 647-657.	6.2	18
22	Polyphenols and Food Quality. Journal of Food Quality, 2017, 2017, 1-2.	2.6	3
23	Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes. Journal of Agricultural and Food Chemistry, 2016, 64, 7823-7828.	5.2	31
24	Effect of flavonols on wine astringency and their interaction with human saliva. Food Chemistry, 2016, 209, 358-364.	8.2	69
25	Allium moly subsp. glaucescens (Asparagaceae), a new subspecies from the Iberian Peninsula. Phytotaxa, 2015, 192, 35.	0.3	0
26	New Anthocyanin–Human Salivary Protein Complexes. Langmuir, 2015, 31, 8392-8401.	3.5	64
27	Characterization of Sensory Properties of FlavanolsA Molecular Dynamic Approach. Chemical Senses, 2015, 40, 381-390.	2.0	41
28	Adding oenological tannin vs. overripe grapes: Effect on the phenolic composition of red wines. Journal of Food Composition and Analysis, 2014, 34, 99-113.	3.9	48
29	Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: synergistic effect and modulation by aromas. Food Research International, 2014, 62, 1100-1107.	6.2	132
30	A new subspecies of Rosmarinus officinalis (Lamiaceae) from the eastern sector of the Iberian Peninsula. Phytotaxa, 2014, 172, 61.	0.3	6
31	Evaluation of sensory parameters of grapes using near infrared spectroscopy. Journal of Food Engineering, 2013, 118, 333-339.	5.2	88
32	A comparative study to distinguish the vineyard of origin by NIRS using entire grapes, skins and seeds. Journal of the Science of Food and Agriculture, 2013, 93, 967-972.	3.5	13
33	Influence of climatic conditions on the phenolic composition of Vitis vinifera L. cv. Graciano. Analytica Chimica Acta, 2012, 732, 73-77.	5.4	45
34	Preliminary study to determine the phenolic maturity stage of grape seeds by computer vision. Analytica Chimica Acta, 2012, 732, 78-82.	5.4	34
35	Interaction of phenolic compounds with bovine serum albumin (BSA) and \hat{l}_{\pm} -amylase and their relationship to astringency perception. Food Chemistry, 2012, 135, 651-658.	8.2	75
36	Determination of phenolic compounds of grape skins during ripening by NIR spectroscopy. LWT - Food Science and Technology, 2011, 44, 847-853.	5.2	103

#	Article	IF	CITATIONS
37	Multivariate analysis of sensory data of <i>Vitis vinifera </i> L. cv. Graciano during ripening. Correlation with the phenolic composition of the grape skins Análisis multivariante de datos sensoriales de <i>Vitis vinifera </i> L. cv. Graciano durante la maduración. Correlación con la composición fenólica del hollejo. CYTA - Journal of Food, 2011, 9, 290-294.	1.9	12
38	Statistical correlation between flavanolic composition, colour and sensorial parameters in grape seed during ripening. Analytica Chimica Acta, 2010, 660, 22-28.	5.4	70
39	Feasibility study on the use of near infrared spectroscopy to determine flavanols in grape seeds. Talanta, 2010, 82, 1778-1783.	5.5	32
40	Microbiological, Physical, and Chemical Procedures to Elaborate High-Quality SO2-Free Wines., 0,,.		8
41	The Light Struck Taste of Wines. , 0, , .		0