
Jeroen van den Beucken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2538707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioactive Electrospun Scaffolds Delivering Growth Factors and Genes for Tissue Engineering Applications. Pharmaceutical Research, 2011, 28, 1259-1272.	1.7	360
2	Nanobiomaterial applications in orthopedics. Journal of Orthopaedic Research, 2007, 25, 11-22.	1.2	316
3	Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces. Coatings, 2012, 2, 95-119.	1.2	207
4	Macrophage type modulates osteogenic differentiation of adipose tissue MSCs. Cell and Tissue Research, 2017, 369, 273-286.	1.5	171
5	Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomaterialia, 2010, 6, 39-47.	4.1	160
6	Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning. Acta Biomaterialia, 2010, 6, 4199-4207.	4.1	158
7	Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials, 2013, 34, 735-745.	5.7	155
8	Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation. Biomaterials, 2012, 33, 6604-6614.	5.7	151
9	Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nature Communications, 2014, 5, 5202.	5.8	151
10	Concise Review: Cell-Based Strategies in Bone Tissue Engineering and Regenerative Medicine. Stem Cells Translational Medicine, 2014, 3, 98-107.	1.6	144
11	Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials, 2014, 35, 8829-8839.	5.7	136
12	Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles. Biomaterials, 2014, 35, 6918-6929.	5.7	130
13	Mechanical aspects of dental implants and osseointegration: A narrative review. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103574.	1.5	122
14	Development of bone substitute materials: from â€~biocompatible' to â€~instructive'. Journal of Materials Chemistry, 2010, 20, 8747.	6.7	116
15	Two phases of disulfide bond formation have differing requirements for oxygen. Journal of Cell Biology, 2013, 203, 615-627.	2.3	113
16	The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium. Biomaterials, 2010, 31, 2461-2469.	5.7	106
17	The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF165. Biomaterials, 2010, 31, 2893-2902.	5.7	105
18	Signaling Pathways Involved in Osteogenesis and Their Application for Bone Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2015, 21, 75-87.	2.5	98

Jeroen van den Beucken

#	Article	IF	CITATIONS
19	Fabrication, characterization, and biological assessment of multilayered DNA-coatings for biomaterial purposes. Biomaterials, 2006, 27, 691-701.	5.7	96
20	Coculture of Osteoblasts and Endothelial Cells: Optimization of Culture Medium and Cell Ratio. Tissue Engineering - Part C: Methods, 2011, 17, 349-357.	1.1	94
21	Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-β1 loaded gelatin microparticles. Biomaterials, 2008, 29, 675-682.	5.7	93
22	Osteogenicity of titanium implants coated with calcium phosphate or collagen type-I in osteoporotic rats. Biomaterials, 2013, 34, 3747-3757.	5.7	93
23	Development of a PCL-silica nanoparticles composite membrane for Guided Bone Regeneration. Materials Science and Engineering C, 2018, 85, 154-161.	3.8	91
24	Calcium phosphate cements: Optimization toward biodegradability. Acta Biomaterialia, 2021, 119, 1-12.	4.1	89
25	Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs. , 2015, 29, 314-329.		85
26	Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats. Biomaterials, 2014, 35, 5482-5490.	5.7	79
27	Functionalization of multilayered DNA-coatings with bone morphogenetic protein 2. Journal of Controlled Release, 2006, 113, 63-72.	4.8	78
28	Hard Tissue Formation of STRO-1–Selected Rat Dental Pulp Stem Cells <i>In Vivo</i> . Tissue Engineering - Part A, 2009, 15, 367-375.	1.6	78
29	Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites. Journal of Biomedical Materials Research - Part A, 2008, 87A, 760-769.	2.1	75
30	The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography. Biomaterials, 2009, 30, 4539-4549.	5.7	74
31	Combinatorial Surface Roughness Effects on Osteoclastogenesis and Osteogenesis. ACS Applied Materials & Interfaces, 2018, 10, 36652-36663.	4.0	74
32	Effect of surface alkali-based treatment of titanium implants on ability to promote in vitro mineralization and in vivo bone formation. Acta Biomaterialia, 2017, 57, 511-523.	4.1	72
33	Composite Colloidal Gels Made of Bisphosphonateâ€Functionalized Gelatin and Bioactive Glass Particles for Regeneration of Osteoporotic Bone Defects. Advanced Functional Materials, 2017, 27, 1703438.	7.8	71
34	Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior. , 2011, 22, 359-376.		69
35	The Effect of Platelet-Rich Plasma <i>In Vitro</i> on Primary Cells: Rat Osteoblast-like Cells and Human Endothelial Cells. Tissue Engineering - Part A, 2010, 16, 3159-3172.	1.6	67
36	Control of Matrix Stiffness Using Methacrylate–Gelatin Hydrogels for a Macrophage-Mediated Inflammatory Response. ACS Biomaterials Science and Engineering, 2020, 6, 3091-3102.	2.6	64

#	Article	IF	CITATIONS
37	Electrosprayed Enzyme Coatings as Bioinspired Alternatives to Bioceramic Coatings for Orthopedic and Oral Implants. Advanced Functional Materials, 2009, 19, 755-762.	7.8	63
38	Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta Biomaterialia, 2014, 10, 508-519.	4.1	63
39	Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity. Applied Surface Science, 2015, 328, 516-524.	3.1	55
40	Incorporation of bioactive glass in calcium phosphate cement: An evaluation. Acta Biomaterialia, 2013, 9, 5728-5739.	4.1	54
41	Instructive coatings for biological guidance of bone implants. Surface and Coatings Technology, 2013, 233, 91-98.	2.2	54
42	Titanium surfaces characteristics modulate macrophage polarization. Materials Science and Engineering C, 2019, 95, 143-151.	3.8	54
43	Cell-Based Approaches in Periodontal Regeneration: A Systematic Review and Meta-Analysis of Periodontal Defect Models in Animal Experimental Work. Tissue Engineering - Part B: Reviews, 2015, 21, 411-426.	2.5	52
44	Comparison of a resorbable magnesium implant in small and large growing-animal models. Acta Biomaterialia, 2018, 78, 378-386.	4.1	52
45	Biomaterialâ€based possibilities for managing periâ€implantitis. Journal of Periodontal Research, 2020, 55, 165-173.	1.4	52
46	Differential loading methods for BMP-2 within injectable calcium phosphate cement. Journal of Controlled Release, 2012, 164, 283-290.	4.8	50
47	Calcium-phosphate-coated Oral Implants Promote Osseointegration in Osteoporosis. Journal of Dental Research, 2013, 92, 982-988.	2.5	50
48	Coaxially Electrospun Scaffolds Based on Hydroxyl-Functionalized Poly(ε-caprolactone) and Loaded with VEGF for Tissue Engineering Applications. Biomacromolecules, 2012, 13, 3650-3660.	2.6	49
49	Biomaterials-aided mandibular reconstruction using in vivo bioreactors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6954-6963.	3.3	49
50	Local delivery of small and large biomolecules in craniomaxillofacial bone. Advanced Drug Delivery Reviews, 2012, 64, 1152-1164.	6.6	48
51	<i>In vitro</i> and <i>in vivo</i> angiogenic capacity of BM-MSCs/HUVECs and AT-MSCs/HUVECs cocultures. Biofabrication, 2014, 6, 015005.	3.7	46
52	Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Osteoarthritis and Cartilage, 2014, 22, 1291-1300.	0.6	45
53	The effect of alkaline phosphatase coated onto titanium alloys on bone responses in rats. Biomaterials, 2009, 30, 6407-6417.	5.7	43
54	In vivo bone response and mechanical evaluation of electrosprayed CaP nanoparticle coatings using the iliac crest of goats as an implantation model. Acta Biomaterialia, 2010, 6, 2227-2236.	4.1	43

#	Article	IF	CITATIONS
55	A lean magnesium–zinc–calcium alloy ZX00 used for bone fracture stabilization in a large growing-animal model. Acta Biomaterialia, 2020, 113, 646-659.	4.1	43
56	Three Different Strategies to Obtain Porous Calcium Phosphate Cements: Comparison of Performance in a Rat Skull Bone Augmentation Model. Tissue Engineering - Part A, 2012, 18, 1171-1182.	1.6	41
57	In vitro responses to electrosprayed alkaline phosphatase/calcium phosphate composite coatings. Acta Biomaterialia, 2009, 5, 2773-2782.	4.1	40
58	Electrostatic Spray Deposition of Biomimetic Nanocrystalline Apatite Coatings onto Titanium. Advanced Engineering Materials, 2012, 14, B13.	1.6	40
59	Calcium phosphate/poly(<scp>d</scp> , <scp>l</scp> â€lacticâ€coâ€glycolic acid) composite bone substitute materials: evaluation of temporal degradation and bone ingrowth in a rat criticalâ€sized cranial defect. Clinical Oral Implants Research, 2012, 23, 151-159.	1.9	40
60	Alkaline phosphatase immobilization onto Bioâ€Cide [®] and Bioâ€Oss [®] for periodontal and bone regeneration. Journal of Clinical Periodontology, 2012, 39, 546-555.	2.3	40
61	Bone regenerative properties of rat, goat and human platelet-rich plasma. International Journal of Oral and Maxillofacial Surgery, 2009, 38, 861-869.	0.7	39
62	Bisphosphonateâ€Functionalized Imaging Agents, Antiâ€Tumor Agents and Nanocarriers for Treatment of Bone Cancer. Advanced Healthcare Materials, 2017, 6, 1601119.	3.9	39
63	Osteoporotic Rat Models for Evaluation of Osseointegration of Bone Implants. Tissue Engineering - Part C: Methods, 2014, 20, 493-505.	1.1	38
64	Reconstruction of large mandibular defects using autologous tissues generated from in vivo bioreactors. Acta Biomaterialia, 2016, 45, 72-84.	4.1	38
65	Anti-bacterial efficacy via drug-delivery system from layer-by-layer coating for percutaneous dental implant components. Applied Surface Science, 2019, 488, 194-204.	3.1	38
66	Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering. Acta Biomaterialia, 2017, 50, 68-77.	4.1	37
67	Multilayered DNA coatings: In vitro bioactivity studies and effects on osteoblast-like cell behavior. Acta Biomaterialia, 2007, 3, 587-596.	4.1	36
68	Alendronate release from calcium phosphate cement for bone regeneration in osteoporotic conditions. Scientific Reports, 2018, 8, 15398.	1.6	36
69	Preclinical evaluation of injectable bone substitute materials. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 191-209.	1.3	35
70	Periodontal Tissue Regeneration Using Enzymatically Solidified Chitosan Hydrogels With or Without Cell Loading. Tissue Engineering - Part A, 2015, 21, 1066-1076.	1.6	35
71	Longâ€ŧerm evaluation of the degradation behavior of three apatiteâ€forming calcium phosphate cements. Journal of Biomedical Materials Research - Part A, 2016, 104, 1072-1081.	2.1	35
72	Diabetes Mellitus and Bone Regeneration: A Systematic Review and Meta-Analysis of Animal Studies. Tissue Engineering - Part B: Reviews, 2017, 23, 471-479.	2.5	35

#	Article	IF	CITATIONS
73	Bone regenerative properties of injectable PGLA–CaP composite with TGF-β1 in a rat augmentation model. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 457-464.	1.3	34
74	Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model. Clinical Oral Implants Research, 2013, 24, 475-483.	1.9	34
75	Cigarette Smoke Extract Induces a Phenotypic Shift in Epithelial Cells; Involvement of HIF1α in Mesenchymal Transition. PLoS ONE, 2014, 9, e107757.	1.1	34
76	Substrate geometry directs the in vitro mineralization of calcium phosphate ceramics. Acta Biomaterialia, 2014, 10, 661-669.	4.1	33
77	Autologously Generated Tissue-Engineered Bone Flaps for Reconstruction of Large Mandibular Defects in an Ovine Model. Tissue Engineering - Part A, 2015, 21, 1520-1528.	1.6	33
78	Biomaterial Property Effects on Platelets and Macrophages: An in Vitro Study. ACS Biomaterials Science and Engineering, 2017, 3, 3318-3327.	2.6	32
79	<i>In vivo</i> evaluation of bioactive glassâ€based coatings on dental implants in a dog implantation model. Clinical Oral Implants Research, 2014, 25, 21-28.	1.9	31
80	Genetically engineered silk–collagen-like copolymer for biomedical applications: Production, characterization and evaluation of cellular response. Acta Biomaterialia, 2014, 10, 3620-3629.	4.1	31
81	Gelation and biocompatibility of injectable alginate–calcium phosphate gels for bone regeneration. Journal of Biomedical Materials Research - Part A, 2014, 102, 808-817.	2.1	31
82	Effect of a new bioactive fibrous glassy scaffold on bone repair. Journal of Materials Science: Materials in Medicine, 2015, 26, 177.	1.7	31
83	Incorporation of PLLA micro-fillers for mechanical reinforcement of calcium-phosphate cement. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 286-294.	1.5	31
84	1-Step Versus 2-Step Immobilization of Alkaline Phosphatase and Bone Morphogenetic Protein-2 onto Implant Surfaces Using Polydopamine. Tissue Engineering - Part C: Methods, 2013, 19, 610-619.	1.1	30
85	Effects of calcium phosphate composition in sputter coatings on <i>in vitro</i> and <i>in vivo</i> performance. Journal of Biomedical Materials Research - Part A, 2015, 103, 300-310.	2.1	30
86	Effect of Nano-HA/Collagen Composite Hydrogels on Osteogenic Behavior of Mesenchymal Stromal Cells. Stem Cell Reviews and Reports, 2016, 12, 352-364.	5.6	30
87	Long-term biological performance of injectable and degradable calcium phosphate cement. Biomedical Materials (Bristol), 2017, 12, 015009.	1.7	30
88	The in vivo performance of CaP/PLGA composites with varied PLGA microsphere sizes and inorganic compositions. Acta Biomaterialia, 2013, 9, 7518-7526.	4.1	29
89	Tough and Osteocompatible Calcium Phosphate Cements Reinforced with Poly(vinyl alcohol) Fibers. ACS Biomaterials Science and Engineering, 2019, 5, 2491-2505.	2.6	29
90	Incorporation of Collagen from Marine Sponges (Spongin) into Hydroxyapatite Samples: Characterization and In Vitro Biological Evaluation. Marine Biotechnology, 2019, 21, 30-37.	1.1	29

#	Article	IF	CITATIONS
91	Platinum-loaded, selenium-doped hydroxyapatite nanoparticles selectively reduce proliferation of prostate and breast cancer cells co-cultured in the presence of stem cells. Journal of Materials Chemistry B, 2020, 8, 2792-2804.	2.9	29
92	Biomaterial Strategies for Stem Cell Maintenance During <i>In Vitro</i> Expansion. Tissue Engineering - Part B: Reviews, 2014, 20, 340-354.	2.5	28
93	Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration. Acta Biomaterialia, 2018, 78, 341-350.	4.1	28
94	Evaluation of an orthotopically implanted calcium phosphate cement containing gelatin microparticles. Journal of Biomedical Materials Research - Part A, 2009, 90A, 372-379.	2.1	27
95	A long-term controlled drug-delivery with anionic beta cyclodextrin complex in layer-by-layer coating for percutaneous implants devices. Carbohydrate Polymers, 2021, 257, 117604.	5.1	27
96	Cyto- and histocompatibility of multilayered DNA-coatings on titanium. Journal of Biomedical Materials Research - Part A, 2006, 77A, 202-211.	2.1	26
97	Adipose tissueâ€derived mesenchymal stem cells as monocultures or cocultures with human umbilical vein endothelial cells: Performance <i>in vitro</i> and in rat cranial defects. Journal of Biomedical Materials Research - Part A, 2014, 102, 1026-1036.	2.1	26
98	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	1.8	26
99	Controlled Release of Chemotherapeutic Platinum–Bisphosphonate Complexes from Injectable Calcium Phosphate Cements. Tissue Engineering - Part A, 2016, 22, 788-800.	1.6	24
100	Stabilizing dental implants with a fiber-reinforced calcium phosphate cement: An in vitro and in vivo study. Acta Biomaterialia, 2020, 110, 280-288.	4.1	24
101	Novel pantothenate derivatives for anti-malarial chemotherapy. Malaria Journal, 2015, 14, 169.	0.8	23
102	Effect of calcium phosphate ceramic substrate geometry on mesenchymal stromal cell organization and osteogenic differentiation. Biofabrication, 2016, 8, 025006.	3.7	23
103	Characterization and biocompatibility of a fibrous glassy scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1141-1151.	1.3	23
104	The performance of CPC/PLGA and Bioâ€Oss [®] for bone regeneration in healthy and osteoporotic rats. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 131-142.	1.6	23
105	In Vitro and In Vivo Effects of Deoxyribonucleic Acid–Based Coatings Funtionalized with Vascular Endothelial Growth Factor. Tissue Engineering, 2007, 13, 711-720.	4.9	22
106	Characterization and <i>in vitro</i> evaluation of biphasic calcium pyrophosphate–tricalciumphosphate radio frequency magnetron sputter coatings. Journal of Biomedical Materials Research - Part A, 2008, 84A, 682-690.	2.1	22
107	Osteophilic properties of bone implant surface modifications in a cassette model on a decorticated goat spinal transverse process. Acta Biomaterialia, 2016, 37, 195-205.	4.1	22
108	Subcutaneous tissue response and osteogenic performance of calcium phosphate nanoparticle-enriched hydrogels in the tibial medullary cavity of guinea pigs. Acta Biomaterialia, 2013, 9, 5464-5474.	4.1	21

#	Article	IF	CITATIONS
109	Coculture with monocytes/macrophages modulates osteogenic differentiation of adiposeâ€derived mesenchymal stromal cells on poly(lacticâ€coâ€glycolic) acid/polycaprolactone scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 785-798.	1.3	21
110	Coupling between macrophage phenotype, angiogenesis and bone formation by calcium phosphates. Materials Science and Engineering C, 2021, 122, 111948.	3.8	21
111	Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair. Acta Biomaterialia, 2021, 128, 120-129.	4.1	21
112	Tuning the Degradation Rate of Calcium Phosphate Cements by Incorporating Mixtures of Polylactic-co-Glycolic Acid Microspheres and Glucono-Delta-Lactone Microparticles. Tissue Engineering - Part A, 2014, 20, 2870-2882.	1.6	20
113	<i>In vitro</i> response to alkaline phosphatase coatings immobilized onto titanium implants using electrospray deposition or polydopamineâ€assisted deposition. Journal of Biomedical Materials Research - Part A, 2014, 102, 1102-1109.	2.1	20
114	Multimodal pore formation in calcium phosphate cements. Journal of Biomedical Materials Research - Part A, 2018, 106, 500-509.	2.1	20
115	Complement proteins regulating macrophage polarisation on biomaterials. Colloids and Surfaces B: Biointerfaces, 2019, 181, 125-133.	2.5	20
116	Comparison of different surface modifications for titanium implants installed into the goat iliac crest. Clinical Oral Implants Research, 2016, 27, e57-67.	1.9	19
117	Efficiency of coculture with angiogenic cells or physiological BMPâ€2 administration on improving osteogenic differentiation and bone formation of MSCs. Journal of Biomedical Materials Research - Part A, 2019, 107, 643-653.	2.1	19
118	Fibrous Hydrogels for Cell Encapsulation: A Modular and Supramolecular Approach. PLoS ONE, 2016, 11, e0155625.	1.1	19
119	Maxillary sinus floor augmentation with injectable calcium phosphate cements: a preâ€clinical study in sheep. Clinical Oral Implants Research, 2013, 24, 210-216.	1.9	18
120	Longâ€term survival of calcium phosphateâ€coated dental implants: a metaâ€analytical approach to the clinical literature. Clinical Oral Implants Research, 2013, 24, 355-362.	1.9	18
121	Multimodal porogen platforms for calcium phosphate cement degradation. Journal of Biomedical Materials Research - Part A, 2019, 107, 1713-1722.	2.1	18
122	Tough and injectable fiber reinforced calcium phosphate cement as an alternative to polymethylmethacrylate cement for vertebral augmentation: a biomechanical study. Biomaterials Science, 2020, 8, 4239-4250.	2.6	18
123	Surface Engineering for Dental Implantology: Favoring Tissue Responses Along the Implant. Tissue Engineering - Part A, 2022, 28, 555-572.	1.6	18
124	Bone Formation Analysis: Effect of Quantification Procedures on the Study Outcome. Tissue Engineering - Part C: Methods, 2012, 18, 369-373.	1.1	17
125	Tantalum oxide and barium sulfate as radiopacifiers in injectable calcium phosphate-poly(lactic- <i>co</i> -glycolic acid) cements for monitoring <i>in vivo</i> degradation. Journal of Biomedical Materials Research - Part A, 2014, 102, 141-149.	2.1	17
126	Bone regeneration and gene expression in bone defects under healthy and osteoporotic bone conditions using two commercially available bone graft substitutes. Biomedical Materials (Bristol), 2015, 10, 035003.	1.7	17

#	Article	IF	CITATIONS
127	Osteogenic capacity of human BM-MSCs, AT-MSCs and their co-cultures using HUVECs in FBS and PL supplemented media. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 779-788.	1.3	17
128	Polymer-Based Local Antibiotic Delivery for Prevention of Polymicrobial Infection in Contaminated Mandibular Implants. ACS Biomaterials Science and Engineering, 2016, 2, 558-566.	2.6	17
129	Periodontal regeneration <i>via</i> chemoattractive constructs. Journal of Clinical Periodontology, 2018, 45, 851-860.	2.3	17
130	Regenerating Critical Size Rat Segmental Bone Defects with a Selfâ€Healing Hybrid Nanocomposite Hydrogel: Effect of Bone Condition and BMPâ€⊋ Incorporation. Macromolecular Bioscience, 2021, 21, e2100088.	2.1	17
131	Processing and in vivo evaluation of multiphasic calcium phosphate cements with dual tricalcium phosphate phases. Acta Biomaterialia, 2012, 8, 3500-3508.	4.1	16
132	Bone forming capacity of cell―and growth factorâ€based constructs at different ectopic implantation sites. Journal of Biomedical Materials Research - Part A, 2015, 103, 439-450.	2.1	16
133	Bisphosphonate-functionalized hyaluronic acid showing selective affinity for osteoclasts as a potential treatment for osteoporosis. Biomaterials Science, 2015, 3, 1197-1207.	2.6	16
134	Macrophage behavior on multilayered DNA-coatingsin vitro. Journal of Biomedical Materials Research - Part A, 2007, 80A, 612-620.	2.1	15
135	Non-glycosylated BMP-2 can induce ectopic bone formation at lower concentrations compared to glycosylated BMP-2. Journal of Controlled Release, 2012, 159, 69-77.	4.8	15
136	Role of oxygen consumption in hypoxia protection by translation factor depletion. Journal of Experimental Biology, 2013, 216, 2283-92.	0.8	15
137	Enzymatic Control of Chitosan Gelation for Delivery of Periodontal Ligament Cells. Macromolecular Bioscience, 2014, 14, 1004-1014.	2.1	15
138	Nanofibrillar hydrogel scaffolds from recombinant proteinâ€based polymers with integrin―and proteoglycanâ€binding domains. Journal of Biomedical Materials Research - Part A, 2016, 104, 3082-3092.	2.1	15
139	Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve <i>in vivo</i> performance: a systematic review and meta-analysis of animal studies. Biomaterials Science, 2020, 8, 4792-4809.	2.6	15
140	Targeting of radioactive platinum-bisphosphonate anticancer drugs to bone of high metabolic activity. Scientific Reports, 2020, 10, 5889.	1.6	15
141	Tantalumpentoxide as a Radiopacifier in Injectable Calcium Phosphate Cements for Bone Substitution. Tissue Engineering - Part C: Methods, 2011, 17, 907-913.	1.1	14
142	RANKL delivery from calcium phosphate containing PLGA microspheres. Journal of Biomedical Materials Research - Part A, 2013, 101, 3123-3130.	2.1	14
143	Human Periodontal Ligament Derived Progenitor Cells: Effect of STRO-1 Cell Sorting and Wnt3a Treatment on Cell Behavior. BioMed Research International, 2014, 2014, 1-10.	0.9	14
144	Monitoring local delivery of vancomycin from gelatin nanospheres in zebrafish larvae. International Journal of Nanomedicine, 2018, Volume 13, 5377-5394.	3.3	14

Jeroen van den Beucken

#	Article	IF	CITATIONS
145	Efficacy of intraoperatively prepared cell-based constructs for bone regeneration. Stem Cell Research and Therapy, 2018, 9, 283.	2.4	14
146	Hybrid particles derived from alendronate and bioactive glass for treatment of osteoporotic bone defects. Journal of Materials Chemistry B, 2019, 7, 796-808.	2.9	14
147	Residual stress evaluation within hydroxyapatite coatings of different micrometer thicknesses. Surface and Coatings Technology, 2015, 266, 177-182.	2.2	13
148	Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites. Tissue Engineering - Part C: Methods, 2015, 21, 1216-1225.	1.1	13
149	Preclinical evaluation of platinum-loaded hydroxyapatite nanoparticles in an embryonic zebrafish xenograft model. Nanoscale, 2020, 12, 13582-13594.	2.8	13
150	An Ovine Model of <i>In Vivo</i> Bioreactor-Based Bone Generation. Tissue Engineering - Part C: Methods, 2020, 26, 384-396.	1.1	13
151	Toward accelerated bone regeneration by altering poly(<scp>d</scp> , <scp>l</scp> â€lacticâ€ <i>co</i> â€glycolic) acid porogen content in calcium phosphate cement. Journal of Biomedical Materials Research - Part A, 2016, 104, 483-492.	2.1	12
152	Polyester fibers can be rendered calcium phosphateâ€binding by surface functionalization with bisphosphonate groups. Journal of Biomedical Materials Research - Part A, 2017, 105, 2335-2342.	2.1	12
153	Spheroid formation and stemness preservation of human periodontal ligament cells on chitosan films. Oral Diseases, 2018, 24, 1083-1092.	1.5	12
154	Fast dissolving glucose porogens for early calcium phosphate cement degradation and bone regeneration. Biomedical Materials (Bristol), 2020, 15, 025002.	1.7	12
155	Localized mandibular infection affects remote in vivo bioreactor bone generation. Biomaterials, 2020, 256, 120185.	5.7	12
156	Bone tumor–targeted delivery of theranostic 195mPt-bisphosphonate complexes promotes killing of metastatic tumor cells. Materials Today Bio, 2021, 9, 100088.	2.6	12
157	Copper source determines chemistry and topography of implant coatings to optimally couple cellular responses and antibacterial activity. Materials Science and Engineering C, 2022, 134, 112550.	3.8	12
158	The biological performance of injectable calcium phosphate/PLGA cement in osteoporotic rats. Biomedical Materials (Bristol), 2013, 8, 035012.	1.7	11
159	Size matters: effects of PLGA-microsphere size in injectable CPC/PLGA on bone formation. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 669-678.	1.3	11
160	Characterization and biological evaluation of the introduction of PLGA into biosilicate [®] . , 2017, 105, 1063-1074.		11
161	Incorporation of simvastatin in PLLA membranes for guided bone regeneration: effect of thermal treatment on simvastatin release. RSC Advances, 2018, 8, 28546-28554.	1.7	11
162	Antiosteoporotic Drugs to Promote Bone Regeneration Related to Titanium Implants: A Systematic Review and Meta-Analysis. Tissue Engineering - Part B: Reviews, 2019, 25, 89-99.	2.5	11

#	Article	IF	CITATIONS
163	Pre-Clinical Evaluation of Biological Bone Substitute Materials for Application in Highly Loaded Skeletal Sites. Biomolecules, 2020, 10, 883.	1.8	11
164	Early-stage macroporosity enhancement in calcium phosphate cements by inclusion of poly(N-vinylpyrrolidone) particles as a porogen. Materials Today Communications, 2020, 23, 100901.	0.9	11
165	Configurational effects of collagen/ALP coatings on enzyme immobilization and surface mineralization. Applied Surface Science, 2014, 311, 292-299.	3.1	10
166	Effect of monocytes/macrophages on the osteogenic differentiation of adipose-derived mesenchymal stromal cells in 3D co-culture spheroids. Tissue and Cell, 2017, 49, 461-469.	1.0	10
167	Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomaterialia, 2022, 145, 1-24.	4.1	10
168	Tissue response to composite hydrogels for vertical bone augmentation in the rat. Journal of Biomedical Materials Research - Part A, 2014, 102, 2079-2088.	2.1	9
169	Top-Down Approach for the Preparation of Highly Porous PLLA Microcylinders. ACS Biomaterials Science and Engineering, 2016, 2, 2099-2107.	2.6	9
170	Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study. Journal of Materials Science: Materials in Medicine, 2019, 30, 64.	1.7	9
171	A Mini-Pig Mandibular Defect Model for Evaluation of Craniomaxillofacial Bone Regeneration. Tissue Engineering - Part C: Methods, 2022, 28, 193-201.	1.1	9

172

#	Article	IF	CITATIONS
181	Tailoring Cu2+-loaded electrospun membranes with antibacterial ability for guided bone regeneration. , 2022, 139, 212976.		7
182	<i>In vivo</i> bioactivity of DNAâ€based coatings: An experimental study in rats. Journal of Biomedical Materials Research - Part A, 2010, 92A, 931-941.	2.1	6
183	Osteoporosis – fracture healing and osseointegration. Drug Discovery Today: Disease Models, 2014, 13, 3-9.	1.2	6
184	Bone Regeneration Using Antiosteoporotic Drugs in Adjunction with Bone Grafting: A Meta-Analysis. Tissue Engineering - Part B: Reviews, 2019, 25, 500-509.	2.5	6
185	Evaluation of polydimethylsiloxaneâ€based substrates for in vitro culture of human periodontal ligament cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 2796-2805.	2.1	6
186	Adsorption of Alendronate onto Biomimetic Apatite Nanocrystals to Develop Drug Carrier Coating for Bone Implants. Key Engineering Materials, 0, 529-530, 475-479.	0.4	5
187	Development of an inÂvitro confinement test to predict the clinical handling of polymer-based injectable bone substitutes. Polymer Testing, 2013, 32, 1379-1384.	2.3	5
188	Putty-like bone fillers based on CaP ceramics or Biosilicate® combined with carboxymethylcellulose: Characterization, optimization, and evaluation. Journal of Biomaterials Applications, 2017, 32, 276-288.	1.2	5
189	Histological evaluation of titanium fiber mesh-coated implants in a rabbit femoral condyle model. Dental Materials, 2022, 38, 613-621.	1.6	5
190	Species-independent stimulation of osteogenic differentiation induced by osteoclasts. Biochemical and Biophysical Research Communications, 2022, 606, 149-155.	1.0	5
191	Growth Behavior of Rat Bone Marrow Cells on RF Magnetron Sputtered Bioglass- and Calcium Phosphate Coatings. Key Engineering Materials, 2008, 361-363, 253-256.	0.4	4
192	DNA-Coatings: Bioactive Properties and Effects on Osteoblast-Like Cells. Key Engineering Materials, 2008, 361-363, 605-608.	0.4	4
193	Combined Treatment Effects Using Bioactiveâ€Coated Implants and Ceramic Granulate in a Rabbit Femoral Condyle Model. Clinical Implant Dentistry and Related Research, 2016, 18, 666-677.	1.6	4
194	Intraoperative Construct Preparation: A Practical Route for Cell-Based Bone Regeneration. Tissue Engineering - Part B: Reviews, 2018, 24, 403-417.	2.5	4
195	Evaluation of Peri-Implant Bone Grafting Around Surface-Porous Dental Implants: An In Vivo Study in a Goat Model. Materials, 2019, 12, 3606.	1.3	4
196	Pharmacological interventions targeting bone diseases in adjunction with bone grafting. , 2020, , 251-280.		4
197	Race for Applicable Antimicrobial Dental Implant Surfaces to Fight Biofilm-Related Disease: Advancing in Laboratorial Studies vs Stagnation in Clinical Application. ACS Biomaterials Science and Engineering, 2022, 8, 3187-3198.	2.6	4
198	A dynamic trajectory class model for intensive longitudinal categorical outcome. Statistics in Medicine, 2014, 33, 2645-2664.	0.8	3

#	Article	IF	CITATIONS
199	Special Collection: Cell-Based Therapy for Bone Regeneration. Tissue Engineering - Part A, 2016, 22, 1127-1128.	1.6	3
200	Histological and Histomorphometric Analyses of Bone Regeneration in Osteoporotic Rats Using a Xenograft Material. Materials, 2021, 14, 222.	1.3	3
201	Evaluation of the inflammatory responses to sol–gel coatings with distinct biocompatibility levels. Journal of Biomedical Materials Research - Part A, 2021, 109, 1539-1548.	2.1	3
202	Innovative implant design for continuous implant stability: A mechanical and histological experimental study in the iliac crest of goats. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104651.	1.5	3
203	Bone regeneration using coculture of mesenchymal stem cells and angiogenic cells. Frontiers of Materials Science, 2014, 8, 32-38.	1.1	2
204	Histomorphometric Evaluation of Peri-Implant Bone Response to Intravenous Administration of Zoledronate (Zometa®) in an Osteoporotic Rat Model. Materials, 2020, 13, 5248.	1.3	2
205	Electrospray Deposition of Bioactive Alkaline Phosphatase Coatings. Key Engineering Materials, 2008, 361-363, 589-592.	0.4	1
206	Bone Regenerative Properties of Injectable Calcium Phosphate/PLGA Cement in an Alveolar Bone Defect. Key Engineering Materials, 0, 529-530, 300-303.	0.4	1
207	Biological Effect of Single or Combined Pharmacological Therapy Using Alendronate and Simvastatin on Implant Osseointegration: An In Vivo Study in Healthy and Osteoporotic Rat Models. Applied Sciences (Switzerland), 2020, 10, 4298.	1.3	1
208	Impact of Single or Combined Drug Therapy on Bone Regeneration in Healthy and Osteoporotic Rats. Tissue Engineering - Part A, 2021, 27, 572-581.	1.6	1
209	Effect of Osteoporosis on Well-Integrated Bone Implants. Applied Sciences (Switzerland), 2021, 11, 723.	1.3	1
210	RNF8-Independent Lys63 Poly-Ubiquitylation Prevents Genomic Instability in Response to Replication-Associated DNA Damage. PLoS ONE, 2014, 9, e89997.	1.1	1
211	Using Fast Dissolving Porogens for Accelerated Bone Regeneration. Journal of the American College of Surgeons, 2019, 229, e161-e162.	0.2	0
212	Cell-based therapies in bone regeneration. , 2020, , 217-250.		0
213	29th annual conference of the European Society for Biomaterials. Biomaterials Science, 2020, 8, 16-17.	2.6	0
214	Effect of Systemic Zoledronic Acid Dosing Regimens on Bone Regeneration in Osteoporotic Rats. Applied Sciences (Switzerland), 2021, 11, 1906.	1.3	0
215	Enzymatically Enhanced Guided Tissue Regeneration. Bioceramics Development and Applications, 2011, 1, 1-3.	0.3	0