
Anna Fahlgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2537737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical instability induces osteoclast differentiation independent of the presence of a fibrous tissue interface and osteocyte apoptosis in a rat model for aseptic loosening. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 91, 115-120.	3.3	5
2	High shear stress amplitude in combination with prolonged stimulus duration determine induction of osteoclast formation by hematopoietic progenitor cells. FASEB Journal, 2020, 34, 3755-3772.	0.5	24
3	Cyclinâ€dependent kinase 8/19 inhibition suppresses osteoclastogenesis by downregulating RANK and promotes osteoblast mineralization and cancellous bone healing. Journal of Cellular Physiology, 2019, 234, 16503-16516.	4.1	16
4	Mechanical loading releases osteoclastogenesisâ€modulating factors through stimulation of the P2X7 receptor in hematopoietic progenitor cells. Journal of Cellular Physiology, 2019, 234, 13057-13067.	4.1	16
5	GSKâ€3β inhibition suppresses instabilityâ€induced osteolysis by a dual action on osteoblast and osteoclast differentiation. Journal of Cellular Physiology, 2018, 233, 2398-2408.	4.1	34
6	Supraphysiological loading induces osteocyteâ€mediated osteoclastogenesis in a novel in vitro model for bone implant loosening. Journal of Orthopaedic Research, 2018, 36, 1425-1434.	2.3	23
7	Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening. Bone Reports, 2017, 7, 17-25.	0.4	21
8	Biocompatibility of Polypyrrole with Human Primary Osteoblasts and the Effect of Dopants. PLoS ONE, 2015, 10, e0134023.	2.5	58
9	Emerging Ideas: Instability-induced Periprosthetic Osteolysis Is Not Dependent on the Fibrous Tissue Interface. Clinical Orthopaedics and Related Research, 2013, 471, 1758-1762.	1.5	13
10	The effects of PTH, loading and surgical insult on cancellous bone at the bone–implant interface in the rabbit. Bone, 2013, 52, 718-724.	2.9	20
11	Fluid pressure induces osteoclast differentiation comparably to titanium particles but through a molecular pathway only partly involving TNFî±. Journal of Cellular Biochemistry, 2012, 113, 1224-1234.	2.6	15
12	Targeting RANKL for reduction of bone loss around unstable implants: OPG-Fc compared to alendronate in a model for mechanically induced loosening. Bone, 2011, 48, 225-230.	2.9	33
13	Fluid-induced osteolysis: modelling and experiments. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 305-318.	1.6	8
14	Fluid pressure and flow as a cause of bone resorption. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 81, 508-516.	3.3	76
15	Bone Resorption Induced by Fluid Flow. Journal of Biomechanical Engineering, 2009, 131, 094505.	1.3	26
16	Mechanical Load and BMP Signaling During Tendon Repair: A Role for Follistatin?. Clinical Orthopaedics and Related Research, 2008, 466, 1592-1597.	1.5	50
17	Additive effects of PTH and bisphosphonates on the bone healing response to metaphyseal implants in rats. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 79, 111-115.	3.3	37