
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2537266/publications.pdf Version: 2024-02-01

VF ΥΠΛΝ

#	Article	IF	CITATIONS
1	Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites. Angewandte Chemie - International Edition, 2015, 54, 12733-12737.	7.2	327
2	Molecularly Imprinted Porous Aromatic Frameworks and Their Composite Components for Selective Extraction of Uranium Ions. Advanced Materials, 2018, 30, e1706507.	11.1	230
3	Porous Aromatic Frameworks as a Platform for Multifunctional Applications. ACS Central Science, 2019, 5, 409-418.	5.3	175
4	Surface Pore Engineering of Covalent Organic Frameworks for Ammonia Capture through Synergistic Multivariate and Open Metal Site Approaches. ACS Central Science, 2018, 4, 748-754.	5.3	163
5	Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. Journal of Materials Chemistry, 2011, 21, 13498.	6.7	146
6	Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves. Nature Communications, 2014, 5, 4260.	5.8	132
7	Constructing an Ion Pathway for Uranium Extraction from Seawater. CheM, 2020, 6, 1683-1691.	5.8	104
8	Construction and adsorption properties of porous aromatic frameworks via AlCl ₃ -triggered coupling polymerization. Journal of Materials Chemistry A, 2014, 2, 11091-11098.	5.2	86
9	A Molecular Coordination Template Strategy for Designing Selective Porous Aromatic Framework Materials for Uranyl Capture. ACS Central Science, 2019, 5, 1432-1439.	5.3	86
10	One-step synthesis of nitrogen-doped microporous carbon materials as metal-free electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 11666-11671.	5.2	84
11	Constructing Uranyl-Specific Nanofluidic Channels for Unipolar Ionic Transport to Realize Ultrafast Uranium Extraction. Journal of the American Chemical Society, 2021, 143, 14523-14529.	6.6	78
12	Targeted Synthesis of Porous Aromatic Frameworks and their Composites for Versatile, Facile, Efficacious, and Durable Antibacterial Polymer Coatings. Advanced Materials, 2013, 25, 6619-6624.	11.1	75
13	Design and Construction of a Metal–Organic Framework as an Efficient Luminescent Sensor for Detecting Antibiotics. Inorganic Chemistry, 2020, 59, 1323-1331.	1.9	72
14	Molecularly Imprinted Porous Aromatic Frameworks Serving as Porous Artificial Enzymes. Advanced Materials, 2018, 30, e1800069.	11.1	71
15	Computational Kinetic Discrimination of Ethylene Polymerization Mechanisms for the Phillips (Cr/SiO ₂) Catalyst. ACS Catalysis, 2015, 5, 3360-3374.	5.5	69
16	Construction and sorption properties of pyrene-based porous aromatic frameworks. Microporous and Mesoporous Materials, 2013, 173, 92-98.	2.2	60
17	Constructing synergistic groups in porous aromatic frameworks for the selective removal and recovery of lead(<scp>ii</scp>) ions. Journal of Materials Chemistry A, 2018, 6, 5202-5207.	5.2	57
18	Sensitive detection of hazardous explosives via highly fluorescent crystalline porous aromatic frameworks. Journal of Materials Chemistry, 2012, 22, 24558.	6.7	54

#	Article	IF	CITATIONS
19	Constructing amidoxime-modified porous adsorbents with open architecture for cost-effective and efficient uranium extraction. Chemical Science, 2020, 11, 4747-4752.	3.7	53
20	Molecularly Imprinted Porous Aromatic Frameworks for Molecular Recognition. ACS Central Science, 2020, 6, 1082-1094.	5.3	46
21	Coupling fullerene into porous aromatic frameworks for gas selective sorption. Chemical Science, 2016, 7, 3751-3756.	3.7	42
22	A Double-Walled Porous Metal–Organic Framework as a Highly Efficient Catalyst for Chemical Fixation of CO ₂ with Epoxides. Inorganic Chemistry, 2019, 58, 15637-15643.	1.9	37
23	Targeted Synthesis of a 3D Crystalline Porous Aromatic Framework with Luminescence Quenching Ability for Hazardous and Explosive Molecules. Journal of Physical Chemistry C, 2012, 116, 26431-26435.	1.5	36
24	Multifunctional porous aromatic frameworks: State of the art and opportunities. EnergyChem, 2020, 2, 100037.	10.1	35
25	Anion Substitution in Porous Aromatic Frameworks: Boosting Molecular Permeability and Selectivity for Membrane Acetylene Separation. Advanced Materials, 2020, 32, e1907449.	11.1	34
26	Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2. Chinese Chemical Letters, 2014, 25, 1407-1410.	4.8	30
27	Synthesis of porous aromatic framework with Friedel–Crafts alkylation reaction for CO 2 separation. Chinese Chemical Letters, 2016, 27, 1479-1484.	4.8	23
28	Screen printing directed synthesis of covalent organic framework membranes with water sieving property. Chemical Communications, 2020, 56, 6519-6522.	2.2	23
29	Porous Organic Frameworks Featured by Distinct Confining Fields for the Selective Hydrogenation of Biomassâ€Derived Ketones. Advanced Materials, 2020, 32, e1908243.	11.1	22
30	Porous Aromatic Framework Nanosheets Anchored with Lewis Pairs for Efficient and Recyclable Heterogeneous Catalysis. Advanced Science, 2020, 7, 2000067.	5.6	22
31	An unprecedented fully reduced {Mo ^V ₆₀ } polyoxometalate: from an all-inorganic molecular light-absorber model to improved photoelectronic performance. Chemical Science, 2022, 13, 4573-4580.	3.7	22
32	Fine-regulating ultramicropores in porous carbon <i>via</i> a self-sacrificial template route for high-performance supercapacitors. Nanoscale, 2021, 13, 1961-1969.	2.8	19
33	Mechanical Bond Approach to Introducing Self-Adaptive Active Sites in Covalent Organic Frameworks for Zinc-Catalyzed Organophosphorus Degradation. ACS Central Science, 2021, 7, 1698-1706.	5.3	16
34	Constructing "breathing―dynamic skeletons with extra π-conjugated adsorption sites for iodine capture. RSC Advances, 2019, 9, 20852-20856.	1.7	14
35	Porous Aromatic Frameworks for Size-Selective Halogenation of Aryl Compounds. ACS Applied Materials & Interfaces, 2017, 9, 30958-30963.	4.0	13
36	A carbonized porous aromatic framework to achieve customized nitrogen atoms for enhanced supercapacitor performance. New Journal of Chemistry, 2019, 43, 18158-18164.	1.4	12

#	Article	IF	CITATIONS
37	Pyrene-Based Fluorescent Porous Organic Polymers for Recognition and Detection of Pesticides. Molecules, 2022, 27, 126.	1.7	11
38	Heterologous Expression of a Thermostable α-Glucosidase from Geobacillus sp. Strain HTA-462 by Escherichia coli and Its Potential Application for Isomaltose–Oligosaccharide Synthesis. Molecules, 2019, 24, 1413.	1.7	9
39	Synthesis and characterization of germanium-centered three-dimensional crystalline porous aromatic framework. Journal of Materials Research, 2012, 27, 1417-1420.	1.2	8
40	Cloning, expression and biochemical characterization of a GH1 β-glucosidase from Cellulosimicrobium cellulans. Biocatalysis and Biotransformation, 2018, 36, 362-371.	1.1	8
41	Inorganic nanocrystal-dynamic porous polymer assemblies with effective energy transfer for sensitive diagnosis of urine copper. Chemical Science, 2020, 11, 12187-12193.	3.7	8
42	Phosphoric Acid Based Porous Aromatic Framework for Uranium Extraction. Acta Chimica Sinica, 2019, 77, 469.	0.5	8
43	Purification and characterization of two novel β-glucosidases from <i>Penicillium oxalicum</i> and their application in bioactive ginsenoside production. Biocatalysis and Biotransformation, 2014, 32, 199-207.	1.1	7
44	A Carbazole-Functionalized Porous Aromatic Framework for Enhancing Volatile Iodine Capture via Lewis Electron Pairing. Molecules, 2021, 26, 5263.	1.7	7
45	Constructing a conjugated bridge for efficient electron transport at the interface of an inorganic–organic hetero-junction. Journal of Materials Chemistry A, 2022, 10, 19750-19756.	5.2	7
46	Ultramicroporous organic materials for selective separation of xenon from krypton. Microporous and Mesoporous Materials, 2020, 305, 110390.	2.2	6
47	Targeted Syntheses of Charged Porous Aromatic Frameworks for Iodine Enrichment and Release. Acta Chimica Sinica, 2016, 74, 67.	0.5	6
48	Biochemical Characterization of Two Rhamnogalacturonan Lyases From Bacteroides ovatus ATCC 8483 With Preference for RG-I Substrates. Frontiers in Microbiology, 2021, 12, 799875.	1.5	6
49	Designed Synthesis and Characterization of Novel Germanium Centered Porous Aromatic Frameworks (Ge-PAFs). Acta Chimica Sinica, 2012, 70, 1446.	0.5	5
50	Novel porous aromatic framework with excellent separation capability of CO2 in N2 or CH4. Chemical Research in Chinese Universities, 2014, 30, 1018-1021.	1.3	4
51	Cell-free enzymatic synthesis of GDP-I-fucose from mannose. AMB Express, 2019, 9, 74.	1.4	4
52	Enzyme-Inspired Assembly: Incorporating Multivariate Interactions to Optimize the Host–Guest Configuration for High-Speed Enantioselective Catalysis. ACS Applied Materials & Interfaces, 2020, 12, 47966-47974.	4.0	4
53	Bioâ€Inspired Fabrication of Porous Aromatic Framework oated Fabric for Achieving Durable Superhydrophobic Applications. Advanced Materials Interfaces, 0, , 2101994.	1.9	3
54	Hydrophobic Fluorinated Porous Organic Frameworks for Enhanced Adsorption of Nerve Agents. Applied Sciences (Switzerland), 2020, 10, 8789.	1.3	2

#	Article	IF	CITATIONS
55	Target Synthesis of a Novel Porous Aromatic Framework for Efficient CO2Capture. Acta Chimica Sinica, 2014, 72, 557.	0.5	1
56	Dimensionality Control of 1D Coupling Reaction for the Facile Preparation of Porous Carbon Nanofibers. Inorganic Chemistry, 2021, 60, 18058-18064.	1.9	1
57	Preparation of Ganglioside GM1 by Supercritical CO2 Extraction and Immobilized Sialidase. Molecules, 2019, 24, 3732.	1.7	Ο