
Hrissi K Karapanagioti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2536948/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Sorption of Pollutants on Microplastics. , 2022, , 1-13.		Ο
2	Sorption of Pollutants on Microplastics. , 2022, , 517-529.		0
3	Microplastics in Water Bodies and in the Environment. Water (Switzerland), 2022, 14, 1324.	1.2	3
4	Microplastics formation based on degradation characteristics of beached plastic bags. Marine Pollution Bulletin, 2021, 169, 112470.	2.3	30
5	Microplastics in Agricultural Soils: A Case Study in Cultivation of Watermelons and Canning Tomatoes. Water (Switzerland), 2021, 13, 2168.	1.2	24
6	Using diffuse reflectance spectroscopy (DRS) technique for studying biofilm formation on LDPE and PET surfaces: laboratory and field experiments. Environmental Science and Pollution Research, 2020, 27, 12055-12064.	2.7	8
7	Physicochemical and Toxicological Assay of Leachate from Malt Spent Rootlets Biochar. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 634-641.	1.3	5
8	Hyper sorption capacity of raw and oxidized biochars from various feedstocks for U(VI). Journal of Environmental Chemical Engineering, 2020, 8, 103932.	3.3	14
9	Measuring the Size and the Charge of Microplastics in Aqueous Suspensions With and Without Microorganisms Using a Zeta-Sizer Meter. Springer Water, 2020, , 250-254.	0.2	5
10	Characteristics of microplastics on two beaches affected by different land uses in Salamina Island in Saronikos Gulf, east Mediterranean. Marine Pollution Bulletin, 2019, 149, 110531.	2.3	22
11	Micro(nanoplastics) in the marine environment: Current knowledge and gaps. Current Opinion in Environmental Science and Health, 2018, 1, 47-51.	2.1	132
12	Sorption of Hydrophobic Organic Compounds to Plastics in the Marine Environment: Sorption and Desorption Kinetics. Handbook of Environmental Chemistry, 2018, , 205-219.	0.2	7
13	Questionnaire-based survey to managers of 101 wastewater treatment plants in Greece confirms their potential as plastic marine litter sources. Marine Pollution Bulletin, 2018, 133, 822-827.	2.3	26
14	Application of nuclear techniques to environmental plastics research. Journal of Environmental Radioactivity, 2018, 192, 368-375.	0.9	36
15	Conclusions of "Hazardous Chemicals Associated with Plastics in Environment― Handbook of Environmental Chemistry, 2018, , 297-305.	0.2	6
16	Stabilization/Solidification of Hazardous Metals from Solid Wastes into Ceramics. Waste and Biomass Valorization, 2017, 8, 1863-1874.	1.8	18
17	Degradation of Various Plastics in the Environment. Handbook of Environmental Chemistry, 2017, , 71-92.	0.2	64
18	Effect of chloride and nitrate salts on Hg(<scp>II</scp>) sorption by raw and pyrolyzed malt spent rootlets. Journal of Chemical Technology and Biotechnology, 2017, 92, 1912-1918.	1.6	16

HRISSI K KARAPANAGIOTI

#	Article	lF	CITATIONS
19	Advanced Analytical Techniques for Assessing the Chemical Compounds Related to Microplastics. Comprehensive Analytical Chemistry, 2017, 75, 209-240.	0.7	12
20	In Focus: Novel Sorbents for Environmental Remediation. Journal of Chemical Technology and Biotechnology, 2017, 92, 1861-1861.	1.6	3
21	Surface Water and Groundwater Sources for Drinking Water. Handbook of Environmental Chemistry, 2017, , 1-19.	0.2	8
22	Oxidation of municipal wastewater by free radicals mechanism. A UV/Vis spectroscopy study. Journal of Environmental Management, 2017, 195, 186-194.	3.8	18
23	The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach. Scientific Reports, 2016, 6, 23501.	1.6	220
24	Treatment of low-strength municipal wastewater containing phenanthrene using activated sludge and biofilm process. Desalination and Water Treatment, 2016, 57, 12047-12057.	1.0	12
25	Studying the Formation of Biofilms on Supports with Different Polarity and Their Efficiency to Treat Wastewater. Journal of Chemistry, 2015, 2015, 1-7.	0.9	10
26	Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Research, 2015, 70, 394-403.	5.3	160
27	Surface properties of beached plastics. Environmental Science and Pollution Research, 2015, 22, 11022-11032.	2.7	86
28	Preparation and Characterization of Biochar Sorbents Produced from Malt Spent Rootlets. Industrial & Engineering Chemistry Research, 2015, 54, 9577-9584.	1.8	53
29	A critical evaluation of magnetic activated carbon's potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 2015, 286, 41-47.	6.5	51
30	Aqueous phenanthrene toxicity after high-frequency ultrasound degradation. Aquatic Toxicology, 2014, 147, 32-40.	1.9	23
31	Aqueous Mercury Sorption by Biochar from Malt Spent Rootlets. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	51
32	Alcohol and Dilution Water Characteristics in Distilled Anis (Ouzo). Journal of Agricultural and Food Chemistry, 2014, 62, 4932-4937.	2.4	5
33	Levels and fate of perfluoroalkyl substances in beached plastic pellets and sediments collected from Greece. Marine Pollution Bulletin, 2014, 87, 286-291.	2.3	65
34	The kinetic of dyes degradation resulted from food industry in wastewater using high frequency of ultrasound. Separation and Purification Technology, 2014, 135, 42-47.	3.9	32
35	Comparison of methods for the characterization and quantification of carbon forms in estuarine and marine sediments from coal mining regions. Organic Geochemistry, 2013, 59, 61-74.	0.9	9
36	Classify plastic waste as hazardous. Nature, 2013, 494, 169-171.	13.7	1,203

3

#	Article	IF	CITATIONS
37	Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product. Journal of Environmental Management, 2013, 128, 252-258.	3.8	28
38	Responses of <i>Lumbriculus variegatus</i> to Activated Carbon Amendments in Uncontaminated Sediments. Environmental Science & amp; Technology, 2012, 46, 12895-12903.	4.6	33
39	Removal of mercury from aqueous solutions by malt spent rootlets. Chemical Engineering Journal, 2012, 213, 135-141.	6.6	66
40	Surface properties of beached plastic pellets. Marine Environmental Research, 2012, 81, 70-77.	1.1	255
41	Assessing the effect of grain-scale sorption rate limitations on the fate of hydrophobic organic groundwater pollutants. Journal of Contaminant Hydrology, 2012, 129-130, 70-79.	1.6	18
42	Special Issue on Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface. Journal of Contaminant Hydrology, 2012, 129-130, 1.	1.6	4
43	Degradation of PAHs by high frequency ultrasound. Water Research, 2011, 45, 2587-2594.	5.3	81
44	Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece. Marine Pollution Bulletin, 2011, 62, 312-317.	2.3	167
45	Ammonia removal properties of lightweight aggregates from Si–Al–Fe and Si–Ca rocks. Environmental Chemistry Letters, 2010, 8, 355-361.	8.3	1
46	Effect of ammonoxidation on lignite properties. Environmental Chemistry Letters, 2010, 8, 373-380.	8.3	4
47	Treatment efficiency and sludge characteristics in conventional and suspended PVA gel beads activated sludge treating Cr (VI) containing wastewater. Desalination and Water Treatment, 2010, 23, 199-205.	1.0	8
48	International Pellet Watch: Global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Marine Pollution Bulletin, 2009, 58, 1437-1446.	2.3	541
49	Diffusive partitioning tracer test for the quantification of nonaqueous phase liquid (NAPL) in the vadose zone: Performance evaluation for heterogeneous NAPL distribution. Journal of Contaminant Hydrology, 2009, 108, 54-63.	1.6	3
50	Testing phenanthrene distribution properties of virgin plastic pellets and plastic eroded pellets found on Lesvos island beaches (Greece). Marine Environmental Research, 2008, 65, 283-290.	1.1	172
51	Removal of phenanthrene from saltwater solutions using activated carbon. Desalination, 2007, 210, 274-280.	4.0	15
52	Evaluation of peat and lignite phenanthrene sorption properties in relation to coal petrography: The impact of inertinite. International Journal of Coal Geology, 2006, 68, 30-38.	1.9	7
53	Transport of hydrocarbons from an emplaced fuel source experiment in the vadose zone at Airbase VærlÃ,se, Denmark. Journal of Contaminant Hydrology, 2005, 81, 1-33.	1.6	38
54	Comment on "Modeling Maximum Adsorption Capacities of Soot and Soot-like Materials for PAHs and PCBs― Environmental Science & Technology, 2005, 39, 381-382.	4.6	20

#	Article	IF	CITATIONS
55	Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactant-modified sorbents. Water Research, 2005, 39, 699-709.	5.3	54
56	Evaluating phenanthrene sorption on various wood chars. Water Research, 2005, 39, 549-558.	5.3	104
57	Phenanthrene and Pyrene Sorption and Intraparticle Diffusion in Polyoxymethylene, Coke, and Activated Carbonâ€. Environmental Science & Technology, 2005, 39, 6516-6526.	4.6	102
58	Evaluating Charcoal Presence in Sediments and its Effect on Phenanthrene Sorption. Water, Air and Soil Pollution, 2004, 4, 359-373.	0.8	8
59	Reactive transport of volatile organic compound mixtures in the unsaturated zone: modeling and tuning with lysimeter data. Environmental Modelling and Software, 2004, 19, 435-450.	1.9	18
60	Modeling attenuation of volatile organic mixtures in the unsaturated zone: codes and usage. Environmental Modelling and Software, 2003, 18, 329-337.	1.9	31
61	Reply to comment on "Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes―by H. Basagaoglu, T.R. Ginn, and B.J. McCoy. Journal of Contaminant Hydrology, 2002, 57, 311-317.	1.6	3
62	Modeling multicomponent NAPL transport in the unsaturated zone with the constituent averaging technique. Advances in Water Resources, 2002, 25, 723-732.	1.7	17
63	Impacts of Heterogeneous Organic Matter on Phenanthrene Sorption:Â Different Soil and Sediment Samples. Environmental Science & Technology, 2001, 35, 4684-4690.	4.6	62
64	Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes. Journal of Contaminant Hydrology, 2001, 48, 1-21.	1.6	38
65	Impacts of Heterogeneous Organic Matter on Phenanthrene Sorption:Â Different Aquifer Depths. Environmental Science & Technology, 2000, 34, 2453-2460.	4.6	37
66	Impacts of Heterogeneous Organic Matter on Phenanthrene Sorption:Â Equilibrium and Kinetic Studies with Aquifer Material. Environmental Science & Technology, 2000, 34, 406-414.	4.6	185
67	Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material. Physics and Chemistry of the Earth, 1999, 24, 535-541.	0.3	17
68	Concentrations of persistent organic pollutants and organic matter characteristics as river sediment quality indices. Toxicological and Environmental Chemistry, 0, , 1-13.	0.6	2
69	Removal of methylene blue from water by food industry by-products and biochars. , 0, 103, 113-121.		5