MÃ³nica Lamas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2536896/publications.pdf Version: 2024-02-01

ΜΑЗΝΙCA LAMAS

#	Article	IF	CITATIONS
1	Müller Cell Molecular Heterogeneity: Facts and Predictions. ASN Neuro, 2022, 14, 175909142211069.	1.5	4
2	Signal Transduction Pathways Activated by Innate Immunity in Mast Cells: Translating Sensing of Changes into Specific Responses. Cells, 2020, 9, 2411.	1.8	31
3	In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina. Methods in Molecular Biology, 2018, 1753, 305-315.	0.4	1
4	microRNA expression in the neural retina: Focus on Müller glia. Journal of Neuroscience Research, 2018, 96, 362-370.	1.3	10
5	Pharmacological inhibition of DNA methyltransferase 1 promotes neuronal differentiation from rodent and human nasal olfactory stem/progenitor cell cultures. International Journal of Developmental Neuroscience, 2017, 58, 65-73.	0.7	11
6	Oct4 Methylation-Mediated Silencing As an Epigenetic Barrier Preventing Müller Glia Dedifferentiation in a Murine Model of Retinal Injury. Frontiers in Neuroscience, 2016, 10, 523.	1.4	26
7	Fyn kinase genetic ablation causes structural abnormalities in mature retina and defective Müller cell function. Molecular and Cellular Neurosciences, 2016, 72, 91-100.	1.0	3
8	MicroRNA changes through Müller glia dedifferentiation and early/late rod photoreceptor differentiation. Neuroscience, 2016, 316, 109-121.	1.1	21
9	Primary Cilia in Rat Mature Müller Glia: Downregulation of IFT20 Expression Reduces Sonic Hedgehog-Mediated Proliferation and Dedifferentiation Potential of Müller Glia Primary Cultures. Cellular and Molecular Neurobiology, 2015, 35, 533-542.	1.7	14
10	Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience, 2014, 280, 142-155.	1.1	44
11	Chronic toluene exposure induces cell proliferation in the mice SVZ but not migration through the RMS. Neuroscience Letters, 2014, 575, 101-106.	1.0	4
12	Immunoglobulin E induces VEGF production in mast cells and potentiates their pro-tumorigenic actions through a Fyn kinase-dependent mechanism. Journal of Hematology and Oncology, 2013, 6, 56.	6.9	24
13	Glutamate-induced epigenetic and morphological changes allow rat Müller cell dedifferentiation but not further acquisition of a photoreceptor phenotype. Neuroscience, 2013, 254, 347-360.	1.1	22
14	Hyperglycemia induces early upregulation of the calcium sensor KChIP3/DREAM/calsenilin in the rat retina. Biochemical and Biophysical Research Communications, 2012, 418, 420-425.	1.0	6
15	GABA-mediated induction of early neuronal markers expression in postnatal rat progenitor cells in culture. Neuroscience, 2012, 224, 210-222.	1.1	18
16	Toluene impairs learning and memory, has antinociceptive effects, and modifies histone acetylation in the dentate gyrus of adolescent and adult rats. Pharmacology Biochemistry and Behavior, 2012, 102, 48-57.	1.3	48
17	Expression and high glucose-mediated regulation of K+ channel interacting protein 3 (KChIP3) and KV4 channels in retinal MA1/4ller glial cells. Biochemical and Biophysical Research Communications, 2011, 404, 678-683.	1.0	11
18	Repeated toluene exposure modifies the acetylation pattern of histones H3 and H4 in the rat brain. Neuroscience Letters, 2011, 489, 142-147.	1.0	18

MÃ³NICA LAMAS

#	Article	IF	CITATIONS
19	GABA and GAD expression in the X-organ sinus gland system of the Procambarus clarkii crayfish: inhibition mediated by GABA between X-organ neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 923-938.	0.7	4
20	Aqueous Humor Endothelin-1 (Et-1), Vascular Endothelial Growth Factor (VEGF) and Cyclooxygenase-2 (COX-2) levels in Mexican Glaucomatous Patients. Current Eye Research, 2010, 35, 287-294.	0.7	32
21	VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells. Biochemical and Biophysical Research Communications, 2010, 401, 262-267.	1.0	19
22	Pharmacological Inhibition of N-Methyl D-Aspartate Receptor Promotes Secretion of Vascular Endothelial Growth Factor in Müller Cells: Effects of Hyperglycemia and Hypoxia. Current Eye Research, 2010, 35, 733-741.	0.7	19
23	NMDA receptor mediates proliferation and CREB phosphorylation in postnatal Müller glia-derived retinal progenitors. Molecular Vision, 2009, 15, 713-21.	1.1	25
24	d-Serine/N-methyl-d-aspartate receptor signaling decreases DNA-binding activity of the transcriptional repressor DREAM in MA¼ller glia from the retina. Neuroscience Letters, 2008, 432, 121-126.	1.0	11
25	d-Serine regulates CREB phosphorylation induced by NMDA receptor activation in Müller glia from the retina. Neuroscience Letters, 2007, 427, 55-60.	1.0	18
26	Cell-specific Expression ofN-Methyl-D-Aspartate Receptor Subunits in MuÌ´ller Glia and Neurons from the Chick Retina. , 2005, 46, 3570.		27
27	Kindling the GABAergic Phenotype of the Glutamatergic Granule Cells. , 2005, , 71-79.		0
28	Programmed and Induced Phenotype of the Hippocampal Granule Cells. Journal of Neuroscience, 2005, 25, 6939-6946.	1.7	83
29	Transcriptionally mediated gene targeting ofgas1 to glioma cells elicits growth arrest and apoptosis. Journal of Neuroscience Research, 2003, 71, 256-263.	1.3	37
30	Glutamic acid decarboxylase (GAD)67, but not GAD65, is constitutively expressed during development and transiently overexpressed by activity in the granule cells of the rat. Neuroscience Letters, 2003, 353, 69-69.	1.0	1
31	Glutamic acid decarboxylase (GAD)67, but not GAD65, is constitutively expressed during development and transiently overexpressed by activity in the granule cells of the rat. Neuroscience Letters, 2003, 353, 69-71.	1.0	30
32	Plasticity of the GABAergic Phenotype of the "Glutamatergic―Granule Cells of the Rat Dentate Gyrus. Journal of Neuroscience, 2003, 23, 5594-5598.	1.7	119
33	Gas1 Is Induced during and Participates in Excitotoxic Neuronal Death. Molecular and Cellular Neurosciences, 2002, 19, 417-429.	1.0	39
34	Presence of claudins mRNA in the brain. Molecular Brain Research, 2002, 104, 250-254.	2.5	24
35	The renal segmental distribution of claudins changes with development. Kidney International, 2002, 62, 476-487.	2.6	146
36	Vesicular GABA transporter mRNA expression in the dentate gyrus and in mossy fiber synaptosomes. Molecular Brain Research, 2001, 93, 209-214.	2.5	65

MÃ³NICA LAMAS

#	Article	IF	CITATIONS
37	Ectopic ICER Expression in Pituitary Corticotroph AtT20 Cells: Effects on Morphology, Cell Cycle, and Hormonal Production. Molecular Endocrinology, 1997, 11, 1425-1434.	3.7	49
38	The Dynamics of the Transcriptional Response to Cyclic Adenosine 3â€2,5â€2-Monophosphate: Recurrent Inducibility and Refractory Phase. Molecular Endocrinology, 1997, 11, 1415-1424.	3.7	35
39	IDENTIFICATION OF A NOVEL GLUCOCORTICOID RESPONSE UNIT (GRU) IN THE 5â€2-FLANKING REGION OF THE MOUSE IL-2 RECEPTOR α GENE. Cytokine, 1997, 9, 973-981.	1.4	11
40	6 Coupling transcription to signaling pathways. Advances in Second Messenger and Phosphoprotein Research, 1997, , 63-74.	4.5	4
41	The Dynamics of the Transcriptional Response to Cyclic Adenosine 3',5'-Monophosphate: Recurrent Inducibility and Refractory Phase. Molecular Endocrinology, 1997, 11, 1415-1424.	3.7	23
42	CREM and the transcriptional response to cyclic AMP. Current Opinion in Endocrinology, Diabetes and Obesity, 1996, 3, 403-407.	0.6	3
43	Glucocorticoid Hormones Upregulate Interleukin 2 Receptor α Gene Expression. Cellular Immunology, 1993. 151. 437-450.	1.4	41