SÃ, ren Raza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2536572/publications.pdf Version: 2024-02-01

SÃ DEN RAZA

#	Article	IF	CITATIONS
1	A generalized non-local optical response theory for plasmonic nanostructures. Nature Communications, 2014, 5, 3809.	12.8	421
2	Nonlocal optical response in metallic nanostructures. Journal of Physics Condensed Matter, 2015, 27, 183204.	1.8	295
3	Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. Optics Express, 2012, 20, 4176.	3.4	239
4	Unusual resonances in nanoplasmonic structures due to nonlocal response. Physical Review B, 2011, 84, .	3.2	221
5	Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics, 2013, 2, 131-138.	6.0	178
6	Silicon Mie resonators for highly directional light emission from monolayer MoS2. Nature Photonics, 2018, 12, 284-290.	31.4	160
7	Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms. ACS Nano, 2014, 8, 1745-1758.	14.6	145
8	Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nature Communications, 2015, 6, 8788.	12.8	139
9	Purcell effect for active tuning of light scattering from semiconductor optical antennas. Science, 2017, 358, 1407-1410.	12.6	97
10	Extremely confined gap surface-plasmon modes excited by electrons. Nature Communications, 2014, 5, 4125.	12.8	72
11	Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity. Physical Review B, 2013, 88, .	3.2	71
12	Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects. Optics Express, 2013, 21, 27344.	3.4	70
13	Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes. Plasmonics, 2013, 8, 193-199.	3.4	67
14	Nonlocal response in plasmonic waveguiding with extreme light confinement. Nanophotonics, 2013, 2, 161-166.	6.0	63
15	DNA-Assembled Plasmonic Waveguides for Nanoscale Light Propagation to a Fluorescent Nanodiamond. Nano Letters, 2018, 18, 7323-7329.	9.1	58
16	Antireflection High-Index Metasurfaces Combining Mie and Fabry-Pérot Resonances. ACS Photonics, 2019, 6, 453-459.	6.6	51
17	Surface-enhanced Raman spectroscopy: nonlocal limitations. Optics Letters, 2012, 37, 2538.	3.3	48
18	Nonlocal study of ultimate plasmon hybridization. Optics Letters, 2015, 40, 839.	3.3	45

SÃ,ren Raza

#	Article	IF	CITATIONS
19	Thermoplasmonic Ignition of Metal Nanoparticles. Nano Letters, 2018, 18, 1699-1706.	9.1	28
20	Electron energy-loss spectroscopy of branched gap plasmon resonators. Nature Communications, 2016, 7, 13790.	12.8	23
21	Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer. Nature Communications, 2021, 12, 48.	12.8	19
22	Slow-light plasmonic metamaterial based on dressed-state analog of electromagnetically induced transparency. Optics Letters, 2015, 40, 4253.	3.3	17
23	Plasmon Launching and Scattering by Silicon Nanoparticles. ACS Photonics, 2021, 8, 1582-1591.	6.6	15
24	Digital resonant laser printing: Bridging nanophotonic science and consumer products. Nano Today, 2018, 19, 7-10.	11.9	14
25	Raman scattering in high-refractive-index nanostructures. Nanophotonics, 2021, 10, 1197-1209.	6.0	14
26	Coupled-resonator optical waveguides: Q-factor and disorder influence. Optical and Quantum Electronics, 2011, 42, 511-519.	3.3	12
27	Thermal near-field tuning of silicon Mie nanoparticles. Nanophotonics, 2021, 10, 4161-4169.	6.0	11
28	Importance of substrates for the visibility of "dark" plasmonic modes. Optics Express, 2020, 28, 13938.	3.4	8
29	Slow light using magnetic and electric Mie resonances. Optics Letters, 2020, 45, 1260.	3.3	8
30	Disentangling Cathodoluminescence Spectra in Nanophotonics: Particle Eigenmodes vs Transition Radiation. Nano Letters, 2022, 22, 2320-2327.	9.1	7
31	Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles. Nanophotonics, 2017, 6, 289-297.	6.0	6
32	Probing optical resonances of silicon nanostructures using tunable-excitation Raman spectroscopy. Optics Express, 2019, 27, 38479.	3.4	6
33	Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay. Journal of the European Optical Society-Rapid Publications, 0, 5, .	1.9	5
34	Nanoplasmonics beyond Ohm's law. , 2012, , .		4
35	Resonant laser printing of bi-material metasurfaces: from plasmonic to photonic optical response. Optics Express, 2018, 26, 20203.	3.4	4
36	Computational Discovery and Experimental Demonstration of Boron Phosphide Ultraviolet Nanoresonators. Advanced Optical Materials, 2022, 10, .	7.3	4

#	Article	IF	CITATIONS
37	Are there novel resonances in nanoplasmonic structures due to nonlocal response?. Proceedings of SPIE, 2012, , .	0.8	0
38	Interplay of nonlocal response, damping, and low group velocity in surface-plasmon polaritons. Proceedings of SPIE, 2016, , .	0.8	0