Haihu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2535804/publications.pdf Version: 2024-02-01

Нанні Гін

#	Article	IF	CITATIONS
1	Numerical Simulation for Bioconvection of Unsteady Stagnation Point Flow of Oldroyd-B Nanofluid with Activation Energy and Temperature-Based Thermal Conductivity Past a Stretching Disk. CMES - Computer Modeling in Engineering and Sciences, 2022, 130, 233-254.	0.8	0
2	A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem. Journal of Computational Physics, 2022, 454, 110963.	1.9	27
3	Rayleigh–Plateau Instability of a Particle-Laden Liquid Column: AÂLattice Boltzmann Study. Langmuir, 2022, 38, 3453-3468.	1.6	9
4	Recent advances in theory, simulations, and experiments on multiphase flows. Physics of Fluids, 2022, 34, .	1.6	5
5	Droplet deformation and breakup in shear-thinning viscoelastic fluid under simple shear flow. Journal of Rheology, 2022, 66, 585-603.	1.3	5
6	Effect of surfactants on droplet generation in a microfluidic T-junction: A lattice Boltzmann study. Physics of Fluids, 2022, 34, .	1.6	13
7	Deformation and breakup of a compound droplet in three-dimensional oscillatory shear flow. International Journal of Multiphase Flow, 2021, 134, 103472.	1.6	54
8	Preferential imbibition in a dual-permeability pore network. Journal of Fluid Mechanics, 2021, 915, .	1.4	28
9	Modeling the deformation of a surfactant-covered droplet under the combined influence of electric field and shear flow. Physics of Fluids, 2021, 33, .	1.6	18
10	Prediction of three-phase relative permeabilities of Berea sandstone using lattice Boltzmann method. Physics of Fluids, 2021, 33, .	1.6	12
11	Poreâ€Scale Modeling of Spontaneous Imbibition in Porous Media Using the Lattice Boltzmann Method. Water Resources Research, 2021, 57, e2020WR029219.	1.7	27
12	Lattice Boltzmann simulation of three-phase flows with moving contact lines on curved surfaces. Physical Review E, 2021, 104, 015310.	0.8	16
13	A microfluidic synthesis method for preparation and regulation of 3-aminophenol formaldehyde resin spheres. Reactive and Functional Polymers, 2021, 165, 104973.	2.0	3
14	Vapor condensation in Rayleigh–Bénard convection. Physics of Fluids, 2021, 33, .	1.6	4
15	Pore-Scale Modeling of Two-Phase Flows with Soluble Surfactants in Porous Media. Energy & Fuels, 2021, 35, 19374-19388.	2.5	7
16	Lattice Boltzmann modeling of particle dynamics in rotating coordinate system. Physics of Fluids, 2021, 33, 123316.	1.6	4
17	Modeling of three-phase displacement in three-dimensional irregular geometries using a lattice Boltzmann method. Physics of Fluids, 2021, 33, .	1.6	14
18	A new capillary force model implemented in lattice Boltzmann method for gas–liquid–solid three-phase flows. Physics of Fluids, 2020, 32, .	1.6	17

Наіни Liu

#	Article	IF	CITATIONS
19	Extraction of the translational Eucken factor from light scattering by molecular gas. Journal of Fluid Mechanics, 2020, 901, .	1.4	12
20	Modelling a surfactant-covered droplet on a solid surface in three-dimensional shear flow. Journal of Fluid Mechanics, 2020, 897, .	1.4	31
21	Modelling double emulsion formation in planar flow-focusing microchannels. Journal of Fluid Mechanics, 2020, 895, .	1.4	52
22	Direct numerical simulation of the sedimentation of a particle pair in a shear-thinning fluid. Physical Review Fluids, 2020, 5, .	1.0	11
23	Pore-scale study of counter-current imbibition in strongly water-wet fractured porous media using lattice Boltzmann method. Physics of Fluids, 2019, 31, .	1.6	58
24	A versatile lattice Boltzmann model for immiscible ternary fluid flows. Physics of Fluids, 2019, 31, 012108.	1.6	48
25	Lattice Boltzmann simulation of immiscible three-phase flows with contact-line dynamics. Physical Review E, 2019, 99, 013308.	0.8	28
26	Numerical Study of Droplet Dynamics on a Solid Surface with Insoluble Surfactants. Langmuir, 2019, 35, 7858-7870.	1.6	25
27	Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio. Physical Review E, 2019, 99, 063306.	0.8	55
28	Numerical study of droplet dynamics in a steady electric field using a hybrid lattice Boltzmann and finite volume method. Physics of Fluids, 2019, 31, .	1.6	44
29	Accurate and efficient computation of the Boltzmann equation for Couette flow: Influence of intermolecular potentials on Knudsen layer function and viscous slip coefficient. Journal of Computational Physics, 2019, 378, 573-590.	1.9	27
30	Multi-axis dynamic displacement measurement based on a strain shunt structure. Sensors and Actuators A: Physical, 2018, 272, 62-74.	2.0	4
31	The lattice Boltzmann method and its applications in complex flows and fluid–structure interactions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 403-404.	1.1	5
32	A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insolubleÂsurfactants. Journal of Fluid Mechanics, 2018, 837, 381-412.	1.4	81
33	Color-gradient lattice Boltzmann modeling of immiscible two-phase flows on partially wetting surfaces. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 416-430.	1.1	11
34	Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology. Physical Review E, 2018, 97, 033307.	0.8	15
35	Lattice Boltzmann Simulation of Immiscible Two-Phase Displacement in Two-Dimensional Berea Sandstone. Applied Sciences (Switzerland), 2018, 8, 1497.	1.3	13
36	Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation. European Physical Journal E, 2018, 41, 124.	0.7	23

Наїни Liu

#	Article	IF	CITATIONS
37	A fast iterative scheme for the linearized Boltzmann equation. Journal of Computational Physics, 2017, 338, 431-451.	1.9	35
38	Lattice <scp>B</scp> oltzmann simulation of immiscible twoâ€phase flow with capillary valve effect in porous media. Water Resources Research, 2017, 53, 3770-3790.	1.7	98
39	Deformation and breakup of a confined droplet in shear flows with power-law rheology. Journal of Rheology, 2017, 61, 741-758.	1.3	33
40	Modeling multidimensional and multispecies biofilms in porous media. Biotechnology and Bioengineering, 2017, 114, 1679-1687.	1.7	19
41	Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels. Physical Review E, 2017, 96, 023309.	0.8	37
42	Rarefaction cloaking: Influence of the fractal rough surface in gas slider bearings. Physics of Fluids, 2017, 29, 102003.	1.6	14
43	Lattice Boltzmann simulation of the trapping of a microdroplet in a well of surface energy. Computers and Fluids, 2017, 155, 68-75.	1.3	9
44	A lattice Boltzmann method for axisymmetric thermocapillary flows. International Journal of Heat and Mass Transfer, 2017, 104, 337-350.	2.5	46
45	Droplet Dynamics of Newtonian and Inelastic Non-Newtonian Fluids in Conï¬nement. Micromachines, 2017, 8, 57.	1.4	7
46	Non-equilibrium dynamics of dense gas under tight confinement. Journal of Fluid Mechanics, 2016, 794, 252-266.	1.4	45
47	A lattice Boltzmann method for axisymmetric multicomponent flows with high viscosity ratio. Journal of Computational Physics, 2016, 327, 873-893.	1.9	44
48	Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Physical Review E, 2016, 94, 023310.	0.8	97
49	Three-dimensional lattice Boltzmann simulations of microdroplets including contact angle hysteresis on topologically structured surfaces. Journal of Computational Science, 2016, 17, 418-430.	1.5	14
50	Three-dimensional phase-field lattice Boltzmann model for incompressible multiphase flows. Journal of Computational Science, 2016, 17, 340-356.	1.5	14
51	Multiphase lattice Boltzmann simulations for porous media applications. Computational Geosciences, 2016, 20, 777-805.	1.2	296
52	Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Physical Review E, 2015, 92, 033306.	0.8	80
53	Lattice Boltzmann Simulations of Thermocapillary Motion of Droplets in Microfluidic Channels. Communications in Computational Physics, 2015, 17, 1113-1126.	0.7	10
54	2D Lattice Boltzmann Simulation of Droplet Jumping in a Viscous Fluid. , 2015, , .		0

Наіни Liu

#	Article	lF	CITATIONS
55	Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network. Physics of Fluids, 2015, 27, .	1.6	127
56	Three dimensional simulations of droplet formation in symmetric and asymmetric T-junctions using the color-gradient lattice Boltzmann model. International Journal of Heat and Mass Transfer, 2015, 90, 931-947.	2.5	27
57	Pore scale simulation of liquid and gas two-phase flow based on digital core technology. Science China Technological Sciences, 2015, 58, 1375-1384.	2.0	45
58	Influence of intermolecular potentials on rarefied gas flows: Fast spectral solutions of the Boltzmann equation. Physics of Fluids, 2015, 27, .	1.6	29
59	Modelling thermocapillary migration of a microfluidic droplet on a solid surface. Journal of Computational Physics, 2015, 280, 37-53.	1.9	41
60	Lattice Boltzmann phase-field modeling of thermocapillary flows in a confined microchannel. Journal of Computational Physics, 2014, 256, 334-356.	1.9	89
61	Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model. Advances in Water Resources, 2014, 73, 144-158.	1.7	152
62	Droplet hysteresis investigation on non-wetting striped textured surfaces: A lattice Boltzmann study. Physica A: Statistical Mechanics and Its Applications, 2014, 411, 53-62.	1.2	15
63	Pore-Scale Simulations of Gas Displacing Liquid in a Homogeneous Pore Network Using the Lattice Boltzmann Method. Transport in Porous Media, 2013, 99, 555-580.	1.2	101
64	A modeling approach to droplet contact-line motion dynamics in high-density-ratio two-phase flow. Computers and Fluids, 2013, 73, 175-186.	1.3	7
65	Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis. Physical Review E, 2013, 88, 043306.	0.8	40
66	Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Physical Review E, 2013, 87, 013010.	0.8	93
67	An improved pore-scale biofilm model and comparison with a microfluidic flow cell experiment. Water Resources Research, 2013, 49, 8370-8382.	1.7	57
68	Physics of Multiphase Microflows and Microdroplets. , 2012, , 1-21.		0
69	Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Physical Review E, 2012, 85, 046309.	0.8	166
70	Modeling and simulation of thermocapillary flows using lattice Boltzmann method. Journal of Computational Physics, 2012, 231, 4433-4453.	1.9	74
71	Lattice Boltzmann Simulation of Droplet Generation in a Microfluidic Cross-Junction. Communications in Computational Physics, 2011, 9, 1235-1256.	0.7	32
72	Droplet formation in microfluidic cross-junctions. Physics of Fluids, 2011, 23, .	1.6	153

Наіни Liu

#	Article	IF	CITATIONS
73	Phase-field modeling droplet dynamics with soluble surfactants. Journal of Computational Physics, 2010, 229, 9166-9187.	1.9	109
74	Droplet formation in a T-shaped microfluidic junction. Journal of Applied Physics, 2009, 106, .	1.1	154
75	Lattice Boltzmann simulation of droplet behaviour in microfluidic devices. Houille Blanche, 2009, 95, 84-92.	0.3	0