
Emmanuelle Vidal-Sallé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2535629/publications.pdf Version: 2024-02-01

EMMANUELLE VIDAL-SALLÃO

#	Article	IF	CITATIONS
1	Mesoscopic approaches for composite reinforcement mechanical behavior. , 2021, , 499-536.		1
2	Longitudinal compression and Poisson ratio of fiber yarns in meso-scale finite element modeling of composite reinforcements. Composites Part B: Engineering, 2018, 141, 9-19.	12.0	29
3	Analysis of large displacements/small strains of enhanced 3D beam with section changes. AIP Conference Proceedings, 2016, , .	0.4	1
4	Numerical Prediction of Internal Stresses due to Weaving. Key Engineering Materials, 2015, 651-653, 338-343.	0.4	0
5	Development of a new 3D beam element with section changes: The first step for large scale textile modelling. Finite Elements in Analysis and Design, 2015, 104, 80-88.	3.2	10
6	Meshing Preprocessor for the Mesoscopic 3D Finite Element Simulation of 2D and Interlock Fabric Deformation. Applied Composite Materials, 2015, 22, 869-886.	2.5	10
7	3D composite reinforcement meso F.E. analyses based on X-ray computed tomography. Composite Structures, 2015, 132, 1094-1104.	5.8	127
8	Characterization of the dynamic friction of woven fabrics: Experimental methods and benchmark results. Composites Part A: Applied Science and Manufacturing, 2014, 67, 289-298.	7.6	61
9	Hypo-Elastic vs Hyper-Elastic Constitutive Equation for Textile Materials at Meso-Scale. Key Engineering Materials, 2014, 611-612, 243-249.	0.4	1
10	Analysis of Composite Reinforcement at Mesoscopic Scale from X-Ray Microtomography. Key Engineering Materials, 2014, 611-612, 316-323.	0.4	0
11	Consistent geometrical modelling of interlock fabrics. Finite Elements in Analysis and Design, 2014, 90, 93-105.	3.2	29
12	Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography. Composite Structures, 2014, 116, 165-176.	5.8	134
13	Meso modelling for composite preform shaping – Simulation of the loss of cohesion of the woven fibre network. Composites Part A: Applied Science and Manufacturing, 2013, 54, 135-144.	7.6	104
14	Mesoscopic scale analyses of textile composite reinforcement compaction. Composites Part B: Engineering, 2013, 44, 231-241.	12.0	86
15	Analysis of the stress components in a textile composite reinforcement. Journal of Composite Materials, 2013, 47, 269-285.	2.4	22
16	Friction Measurement on Dry Fabric for Forming Simulation of Composite Reinforcement. Key Engineering Materials, 2012, 504-506, 319-324.	0.4	8
17	3D Hyperelastic Constitutive Model for Yarn Behaviour Description. Key Engineering Materials, 2012, 504-506, 267-272.	0.4	3
18	Hyperelastic model for large deformation analyses of 3D interlock composite preforms. Composites Science and Technology, 2012, 72, 1352-1360.	7.8	117

#	Article	IF	CITATIONS
19	Experimental identification and validation of the plastic wave approach in hot forging of steels. Wear, 2012, 286-287, 35-44.	3.1	4
20	Use of a hyperelastic constitutive law for dry woven forming simulations. , 2011, , .		2
21	Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Composites Part A: Applied Science and Manufacturing, 2011, 42, 612-622.	7.6	135
22	Hyperelastic modelling for mesoscopic analyses of composite reinforcements. Composites Science and Technology, 2011, 71, 1623-1631.	7.8	123
23	Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Composites Science and Technology, 2011, 71, 683-692.	7.8	333
24	Modeling of the mechanical behavior of amorphous glassy polymer based on the quasi-point defect theory—Part II: 3D formulation and finite element modeling of polycarbonate. International Journal of Non-Linear Mechanics, 2011, 46, 507-518.	2.6	5
25	Simulation of Forming and Wrinkling of Textile Composite Reinforcements. , 2011, , .		2
26	Numerical Predictions of Surface Damage During Bulk Forming Operations. , 2011, , .		0
27	Approche hyperélastique pour la simulation de renforts tissés de composites. Études en grandes formations à l'échelle mésoscopique. Revue Des Composites Et Des Materiaux Avances, 2011, 21, 9-21.	0.6	Ο
28	Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming. International Journal of Material Forming, 2010, 3, 1229-1240.	2.0	55
29	FEM numerical simulation of the warm and hot upsetting sliding test. International Journal of Material Forming, 2010, 3, 315-318.	2.0	2
30	Advantages of the Meso/Macro Approach for the Simulation of Fibre Composite Reinforcements. International Journal of Material Forming, 2010, 3, 643-646.	2.0	12
31	Use of numerical simulation of woven reinforcementforming at mesoscale: Influence of transversecompression on the global response. International Journal of Material Forming, 2010, 3, 699-702.	2.0	8
32	Modeling strategies for fabrics unit cell geometryapplication to permeability simulations International Journal of Material Forming, 2010, 3, 727-730.	2.0	8
33	Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark. Journal of Materials Processing Technology, 2010, 210, 378-388.	6.3	203
34	A Hyperelastic Approach for Composite Reinforcement Large Deformation Analysis. Journal of Composite Materials, 2010, 44, 5-26.	2.4	95
35	Mesoscopic Mechanical Analyses of Textile Composites: Validation with X-Ray Tomography. Lecture Notes in Applied and Computational Mechanics, 2010, , 71-78.	2.2	1
36	About the validity of the plastic wave model for an actual roughness of axisymmetric tooling in bulk forming. International Journal of Material Forming, 2009, 2, 217-220.	2.0	8

#	Article	IF	CITATIONS
37	Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. International Journal of Material Forming, 2009, 2, 189-192.	2.0	30
38	Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming. Composites Part A: Applied Science and Manufacturing, 2009, 40, 997-1007.	7.6	95
39	Simulations éléments-finis de la déformation de textiles aux échelles macro et mésoscopique. Mecanique Et Industries, 2009, 10, 15-19.	0.2	6
40	Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Composites Science and Technology, 2008, 68, 2433-2440.	7.8	158
41	Large deformation analysis of fibrous materials using rate constitutive equations. Computers and Structures, 2008, 86, 1164-1175.	4.4	80
42	Quasi-static versus dynamic explicit scheme for the modeling of an energy-driven thermo-mechanical forming process. International Journal of Material Forming, 2008, 1, 407-410.	2.0	0
43	An improved « plastic wave » friction model for rough contact in axisymmetric modeling of bulk forming processes. International Journal of Material Forming, 2008, 1, 1263-1266.	2.0	5
44	Preforming simulation of the reinforcements of woven composites: continuous approach within a commercial code. International Journal of Material Forming, 2008, 1, 879-882.	2.0	5
45	Hyperelastic Approach for Composite Reinforcement Forming Simulations. International Journal of Material Forming, 2008, 1, 811-814.	2.0	20
46	Computational determination of the mechanical behavior of textile composite reinforcement. Validation with x-ray tomography. International Journal of Material Forming, 2008, 1, 823-826.	2.0	6
47	Computational determination of in-plane shear mechanical behaviour of textile composite reinforcements. Computational Materials Science, 2007, 40, 439-448.	3.0	106
48	Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography. Journal of Biomechanics, 2007, 40, 2174-2183.	2.1	20
49	Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalized Maxwell model Application to wood material. Mechanics of Time-Dependent Materials, 2007, 11, 127-142.	4.4	23
50	Identification procedure of a hardening law for powder compaction. Powder Technology, 2005, 157, 183-190.	4.2	9
51	Impact of Density Gradients on the Stress Level Within a Green Ceramic Compact During Drying. Drying Technology, 2005, 23, 71-82.	3.1	4
52	Lubricant flow between rough surfaces during closed-die forming. Journal of Materials Processing Technology, 2004, 153-154, 707-713.	6.3	1
53	A friction model for mixed lubrication regime coupled to a prediction of a local thermal contact resistance for axisymmetric configurations. Tribology Series, 2003, 43, 339-348.	0.1	2
54	A shear stress dependent ductile damage model. Journal of Materials Processing Technology, 2002, 121, 87-93.	6.3	11

#	Article	IF	CITATIONS
55	Friction law for hydrostatic mixed lubrication regime. Journal of Materials Processing Technology, 2001, 118, 101-108.	6.3	9
56	Simulation of Composite Forming at Meso Scale. Key Engineering Materials, 0, 554-557, 410-415.	0.4	2
57	Identification of Fibre Degradation due to Friction during the Weaving Process. Key Engineering Materials, 0, 554-557, 416-422.	0.4	7
58	Analysis of the Stress Components during the Forming of a Textile Composite Reinforcement. Key Engineering Materials, 0, 554-557, 492-500.	0.4	0
59	Analyses of Textile Composite Reinforcement Compaction at the Mesoscopic Scale. Key Engineering Materials, 0, 611-612, 356-362.	0.4	2