Rossella Cc Mello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2534900/publications.pdf

Version: 2024-02-01

60 papers 2,437 citations

218381 26 h-index 205818 48 g-index

73 all docs 73 docs citations

times ranked

73

1660 citing authors

#	Article	IF	CITATIONS
1	Oxidations by methyl(trifluoromethyl)dioxirane. 2. Oxyfunctionalization of saturated hydrocarbons. Journal of the American Chemical Society, 1989, 111, 6749-6757.	6.6	293
2	Silver-Catalyzed C-C Bond Formation Between Methane and Ethyl Diazoacetate in Supercritical CO ₂ . Science, 2011, 332, 835-838.	6.0	228
3	On the isolation and characterization of methyl (trifluoromethyl) dioxirane. Journal of Organic Chemistry, 1988, 53, 3890-3891.	1.7	173
4	O-Atom Insertion into SiH Bonds by Dioxiranes: A Stereospecific and Direct Conversion of Silanes into Silanols. Angewandte Chemie International Edition in English, 1990, 29, 890-891.	4.4	103
5	Regioselective oxyfunctionalization of unactivated tertiary and secondary carbon-hydrogen bonds of alkylamines by methyl(trifluoromethyl)dioxirane in acid medium. Journal of the American Chemical Society, 1993, 115, 7250-7253.	6.6	99
6	Thermally and photochemically initiated radical chain decomposition of ketone-free methyl(trifluoromethyl)dioxirane. Journal of the American Chemical Society, 1991, 113, 7654-7658.	6.6	88
7	Oxygen-17 and carbon-13 identification of the dimethyldioxirane intermediate arising in the reaction of potassium caroate with acetone. Journal of Organic Chemistry, 1987, 52, 699-700.	1.7	81
8	Oxidations by methyl(trifluoromethyl)dioxirane. 5. Conversion of alcohols into carbonyl compounds. Journal of the American Chemical Society, 1991, 113, 2205-2208.	6.6	79
9	Oxidations by methyl(trifluoromethyl)dioxirane. 3. Selective polyoxyfunctionalization of adamantane. Tetrahedron Letters, 1990, 31, 3067-3070.	0.7	72
10	Oxidation of acetals, an orthoester, and ethers by dioxiranes through \hat{l}_{\pm} -CH insertion. Tetrahedron Letters, 1992, 33, 4225-4228.	0.7	62
11	Oxidations by methyl(trifluoromethyl)dioxirane. 4.1 oxyfunctionalization of aromatic hydrocarbons. Tetrahedron Letters, 1990, 31, 6097-6100.	0.7	57
12	Epoxidation of Primary and Secondary Alkenylammonium Salts with Dimethyldioxirane, Methyl(trifluoromethyl)dioxirane, and m-Chloroperbenzoic Acid. A General Synthetic Route to Epoxyalkylamines. Journal of Organic Chemistry, 1995, 60, 3692-3699.	1.7	55
13	Oxidation of Alcohols to Carbonyl Compounds with CrO3·SiO2in Supercritical Carbon Dioxide. Journal of Organic Chemistry, 2006, 71, 1039-1042.	1.7	55
14	Oxidations by methyl trifluoromethyl dioxirane. Epoxidation of enol ethers. Tetrahedron Letters, 1989, 30, 257-260.	0.7	51
15	Oxygen atom insertion into the benzylic carbon-hydrogen bond of (R)-(-)-2-phenylbutane by methyl(trifluoromethyl)dioxirane: an efficient and mild regio- and stereoselective synthesis of (S)-(-)-2-phenyl-2-butanol. Journal of Organic Chemistry, 1992, 57, 953-955.	1.7	48
16	Oxidation of alkynes by dioxiranes. Tetrahedron Letters, 1992, 33, 7929-7932.	0.7	48
17	Mechanism of the Oxidation of Sulfides by Dioxiranes. 1. Intermediacy of a 10-S-4 Hypervalent Sulfur Adduct. Journal of the American Chemical Society, 2002, 124, 9154-9163.	6.6	43
18	One-electron reduction of methyl(trifluoromethyl)dioxirane by iodide ion. Evidence for an electron-transfer chain reaction mediated by the superoxide ion. Journal of the American Chemical Society, 1992, 114, 8345-8349.	6.6	41

#	Article	IF	CITATIONS
19	Oâ€Atomâ€Insertion in Siâ€Hâ€Bindungen mit Hilfe von Dioxiranen: Eine stereospezifische und direkte Umwandlung von Silanen in Silanole. Angewandte Chemie, 1990, 102, 916-917.	1.6	39
20	Oxidation of catechol and of 2,6-di-tert-butylphenol by dioxiranes. Tetrahedron Letters, 1991, 32, 5445-5448.	0.7	39
21	Baeyerâ^'Villiger Oxidation with Potassium Peroxomonosulfate Supported on Acidic Silica Gel. Journal of Organic Chemistry, 2005, 70, 10879-10882.	1.7	38
22	Baeyerâ^'Villiger Oxidation in Supercritical CO2with Potassium Peroxomonosulfate Supported on Acidic Silica Gel. Journal of Organic Chemistry, 2006, 71, 6432-6436.	1.7	36
23	Oxyfunctionalization of Aliphatic Esters by Methyl(trifluoromethyl)dioxirane. Journal of Organic Chemistry, 1996, 61, 5564-5566.	1.7	34
24	Iodomethane Oxidation by Dimethyldioxirane:Â A New Route to Hypoiodous Acid and Iodohydrines. Organic Letters, 1999, 1, 2125-2128.	2.4	33
25	Oppenauer Oxidation of Secondary Alcohols with $1,1,1$ -Trifluoroacetone as Hydride Acceptor. Journal of Organic Chemistry, 2007, 72, 9376-9378.	1.7	30
26	A General and Efficient Method for the Monohydroxylation of Alkanes. Angewandte Chemie International Edition in English, 1996, 35, 217-218.	4.4	29
27	Influence of Remote Substituents on the Equatorial/Axial Selectivity in the Monooxygenation of Methylene Câ [^] H Bonds of Substituted Cyclohexanes. Journal of the American Chemical Society, 2001, 123, 7487-7491.	6.6	29
28	Epoxidation of Olefins with a Silica-Supported Peracid. Journal of Organic Chemistry, 2012, 77, 6409-6413.	1.7	27
29	The oxidation of alkanes with dimethyldioxirane; a new mechanistic insight. Tetrahedron Letters, 1997, 38, 2373-2376.	0.7	25
30	Baeyer–Villiger oxidation of ketones with a silica-supported peracid in supercritical carbon dioxide under flow conditions. Green Chemistry, 2009, 11, 994.	4.6	25
31	Catalytic Functionalization of Methane and Light Alkanes in Supercritical Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 11013-11018.	1.7	25
32	H-Bonding Interactions in the Epoxidation of Alkenylammonium Salts with Dimethyldioxirane andm-Chloroperbenzoic Acid:Â A Kinetic Study. Journal of Organic Chemistry, 1999, 64, 4705-4711.	1.7	23
33	Oxidation of Sulfides with a Silicaâ€Supported Peracid in Supercritical Carbon Dioxide under Flow Conditions: Tuning Chemoselectivity with Pressure. European Journal of Organic Chemistry, 2010, 2010, 6200-6206.	1.2	23
34	One electron transfer chain decomposition of trifluoroacetone diperoxide: The first 1,2,4,5-tetroxane with O-transfer capability. Tetrahedron Letters, 1992, 33, 5833-5836.	0.7	21
35	Silica-supported HgSO4/H2SO4: a convenient reagent for the hydration of alkynes under mild conditions. Tetrahedron Letters, 2010, 51, 4281-4283.	0.7	21
36	Photolysis of dioxiranes in the presence of a nitroxide radical scavenger: the intermediacy of radical anion and diyl species in the production and trapping of methyl and trifluoromethyl radicals. Journal of the Chemical Society Chemical Communications, 1991, , 771.	2.0	20

#	Article	IF	CITATIONS
37	Epoxidation of Olefins with a Silica-Supported Peracid in Supercritical Carbon Dioxide under Flow Conditions. Journal of Organic Chemistry, 2012, 77, 4706-4710.	1.7	20
38	Evidence for the involvement of a sulfurane intermediate in the oxidation of simple sulfides by methyl(trifluoromethyl)dioxirane. Tetrahedron Letters, 1996, 37, 2299-2302.	0.7	18
39	Oxygenation of Alkane Câ^'H Bonds with Methyl(trifluoromethyl)dioxirane:Â Effect of the Substituents and the Solvent on the Reaction Rate. Journal of Organic Chemistry, 2005, 70, 7919-7924.	1.7	18
40	Oxidation of tertiary amines by chromium(VI) oxide diperoxide. Journal of the Chemical Society Perkin Transactions II, 1989, , 417.	0.9	16
41	On the reactivity of silylperoxides. Tetrahedron, 1986, 42, 877-883.	1.0	15
42	Hyperconjugative Control by Remote Substituents of Diastereoselectivity in the Oxygenation of Hydrocarbons. Organic Letters, 2000, 2, 831-834.	2.4	15
43	Reactions at Interfaces: Oxygenation of <i>n</i> -Butyl Ligands Anchored on Silica Surfaces with Methyl (trifluoromethyl) dioxirane. Journal of Organic Chemistry, 2011, 76, 10129-10139.	1.7	14
44	Analysis of Hybrid Silica Materials with the Aid of Conventional NMR and GC/MS. Analytical Chemistry, 2008, 80, 9355-9359.	3.2	13
45	On the ionizing properties of supercritical carbon dioxide: uncatalyzed electrophilic bromination of aromatics. RSC Advances, 2014, 4, 51016-51021.	1.7	12
46	Photoiodocarboxylation of Activated Câ•C Double Bonds with CO ₂ and Lithium Iodide. Journal of Organic Chemistry, 2018, 83, 13381-13394.	1.7	12
47	Supercritical Carbon Dioxide: A Promoter of Carbon–Halogen Bond Heterolysis. Angewandte Chemie - International Edition, 2013, 52, 13298-13301.	7.2	11
48	Mechanism of the Oxidation of Sulfides by Dioxiranes:Â Conformational Mobility and Transannular Interaction in the Oxidation of Thianthrene 5-Oxide. Journal of Organic Chemistry, 2004, 69, 9090-9099.	1.7	10
49	Eine allgemeine und effiziente Methode zur Monohydroxylierung von Alkanen. Angewandte Chemie, 1996, 108, 196-198.	1.6	9
50	S _N 1 reactions in supercritical carbon dioxide in the presence of alcohols: the role of preferential solvation. Organic and Biomolecular Chemistry, 2016, 14, 6554-6560.	1.5	8
51	C5H7O2+Ions:Â The Correlation between Their Thermochemistry in Acidic Solution and Their Chemistry in the Gas Phase. Journal of Organic Chemistry, 2000, 65, 964-968.	1.7	7
52	A Simple Protocol for the Generation of Methyl(trifluoromethyl)dioxirane. Synlett, 2007, 2007, 0047-0050.	1.0	7
53	On the Reactivity of C(sp ³)–H σâ€Bonds: Oxygenation with Methyl(trifluoromethyl)Ådioxirane. European Journal of Organic Chemistry, 2008, 2008, 455-466.	1.2	7
54	Iodideâ€Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide. ChemSusChem, 2016, 9, 3397-3400.	3.6	7

#	Article	IF	CITATIONS
55	Photolysis of Tertiary Amines in the Presence of CO ₂ : The Paths to Formic Acid, α-Amino Acids, and 1,2-Diamines. Journal of Organic Chemistry, 2018, 83, 96-103.	1.7	7
56	Reactivity of Lithium \hat{I}^2 -Ketocarboxylates: The Role of Lithium Salts. Journal of the American Chemical Society, 2017, 139, 17414-17420.	6.6	6
57	Synthesis of N-diisopropyl phosphoryl benzyl-tetrahydroisoquinoline, a new class of mitochondrial complexes I and III inhibitors. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1491-1494.	1.0	4
58	Conformational Mobility of Thianthrene-5-oxide. Journal of Organic Chemistry, 2005, 70, 3450-3457.	1.7	2
59	Inverse solvent effects in the heterogeneous and homogeneous epoxidation of cis-2-heptene with [2-percarboxyethyl]-functionalized silica and meta-chloroperbenzoic acid. Organic and Biomolecular Chemistry, 2014, 12, 3246-3250.	1.5	2
60	Oxygenation of Alkane C—H Bonds with Methyl(trifluoromethyl)dioxirane: Effect of the Substituents and the Solvent on the Reaction Rate ChemInform, 2005, 36, no.	0.1	0