List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/253484/publications.pdf Version: 2024-02-01

Снимнил Уім

#	Article	IF	CITATIONS
1	Co-delivery of doxorubicin and siRNA by all-trans retinoic acid conjugated chitosan-based nanocarriers for multiple synergistic antitumor efficacy. Carbohydrate Polymers, 2022, 283, 119097.	5.1	13
2	Dual targeted delivery of statins and nucleic acids by chitosan-based nanoparticles for enhanced antiatherosclerotic efficacy. Biomaterials, 2022, 280, 121324.	5.7	17
3	Co-delivery of doxorubicin and CRISPR/Cas9 or RNAi-expressing plasmid by chitosan-based nanoparticle for cancer therapy. Carbohydrate Polymers, 2022, 287, 119315.	5.1	23
4	Caveolae-Mediated Endocytosis Drives Robust siRNA Delivery of Polymeric Nanoparticles to Macrophages. ACS Nano, 2021, 15, 8267-8282.	7.3	42
5	Enhanced antitumor efficacy of glutathione-responsive chitosan based nanoparticles through co-delivery of chemotherapeutics, genes, and immune agents. Carbohydrate Polymers, 2021, 270, 118384.	5.1	9
6	siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomaterialia, 2020, 103, 213-222.	4.1	35
7	Benzylguanidine and Galactose Double-Conjugated Chitosan Nanoparticles with Reduction Responsiveness for Targeted Delivery of Doxorubicin to CXCR 4 Positive Tumors. Bioconjugate Chemistry, 2020, 31, 2446-2455.	1.8	12
8	PEG modified trimethyl chitosan based nanoparticles for the codelivery of doxorubicin and iSur-pDNA. Materials Letters, 2019, 238, 143-146.	1.3	9
9	Estrone-modified pH-sensitive glycol chitosan nanoparticles for drug delivery in breast cancer. Acta Biomaterialia, 2018, 73, 400-411.	4.1	68
10	Enhanced antitumor efficacy of arginine modified amphiphilic nanoparticles co-delivering doxorubicin and iSur-pDNA via the multiple synergistic effect. Biomaterials, 2018, 150, 1-13.	5.7	29
11	Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells. Biomaterials, 2018, 185, 117-132.	5.7	128
12	Effects of pore size on <i>in vitro</i> and <i>in vivo</i> anticancer efficacies of mesoporous silica nanoparticles. RSC Advances, 2018, 8, 24633-24640.	1.7	48
13	Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel. Acta Biomaterialia, 2017, 53, 355-366.	4.1	75
14	Co-Delivery of Doxorubicin and Survivin shRNA-Expressing Plasmid Via Microenvironment-Responsive Dendritic Mesoporous Silica Nanoparticles for Synergistic Cancer Therapy. Pharmaceutical Research, 2017, 34, 2829-2841.	1.7	32
15	Co-delivery of doxorubicin and interleukin-2 via chitosan based nanoparticles for enhanced antitumor efficacy. Acta Biomaterialia, 2017, 47, 81-90.	4.1	78
16	pH-Responsive Core–Shell Structured Nanoparticles for Triple-Stage Targeted Delivery of Doxorubicin to Tumors. ACS Applied Materials & Interfaces, 2016, 8, 23498-23508.	4.0	45
17	Effects of particle size and binding affinity for small interfering RNA on the cellular processing, intestinal permeation and antiâ€inflammatory efficacy of polymeric nanoparticles. Journal of Gene Medicine, 2015, 17, 244-256.	1.4	18
18	Enhanced antitumor efficacies of multifunctional nanocomplexes through knocking down the barriers for siRNA delivery. Biomaterials, 2015, 44, 111-121.	5.7	35

#	Article	IF	CITATIONS
19	Effects of mannose density on inÂvitro and inÂvivo cellular uptake andÂRNAi efficiency of polymeric nanoparticles. Biomaterials, 2015, 52, 229-239.	5.7	46
20	Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Biomaterials, 2015, 60, 42-52.	5.7	163
21	Optimization of multifunctional chitosan–siRNA nanoparticles for oral delivery applications, targeting TNF-α silencing in rats. Acta Biomaterialia, 2015, 17, 98-106.	4.1	64
22	Oral delivery of shRNA based on amino acid modified chitosan for improved antitumor efficacy. Biomaterials, 2015, 70, 126-137.	5.7	27
23	Folate conjugated trimethyl chitosan/graphene oxide nanocomplexes as potential carriers for drug and gene delivery. Materials Letters, 2014, 125, 82-85.	1.3	54
24	Enhanced antitumor efficacy of folate modified amphiphilic nanoparticles through co-delivery of chemotherapeutic drugs and genes. Biomaterials, 2014, 35, 6369-6378.	5.7	59
25	Oral delivery of shRNA and siRNA via multifunctional polymeric nanoparticles for synergistic cancer therapy. Biomaterials, 2014, 35, 4589-4600.	5.7	83
26	The use of gene activated matrix to mediate effective SMAD2 gene silencing against hypertrophic scar. Biomaterials, 2014, 35, 2488-2498.	5.7	23
27	Ternary Polymeric Nanoparticles for Oral siRNA Delivery. Pharmaceutical Research, 2013, 30, 1228-1239.	1.7	29
28	Galactosylated trimethyl chitosan–cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Biomaterials, 2013, 34, 3667-3677.	5.7	117
29	Effect of binding affinity for siRNA on the inÂvivo antitumor efficacy of polyplexes. Biomaterials, 2013, 34, 5317-5327.	5.7	51
30	Trimethyl Chitosan-Cysteine Nanoparticles for Systemic Delivery of TNF-α siRNA via Oral and Intraperitoneal Routes. Pharmaceutical Research, 2013, 30, 2596-2606.	1.7	22
31	Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials, 2013, 34, 2843-2854.	5.7	125
32	Glycyrrhizin-modified O-carboxymethyl chitosan nanoparticles as drug vehicles targeting hepatocellular carcinoma. Biomaterials, 2012, 33, 7594-7604.	5.7	123
33	Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials, 2012, 33, 8569-8578.	5.7	187
34	Effects of quaternization and PEGylation on the biocompatibility, enzymatic degradability and antioxidant activity of chitosan derivatives. Carbohydrate Polymers, 2012, 87, 2505-2511.	5.1	20
35	Effects of hydrophobic and hydrophilic modifications on gene delivery of amphiphilic chitosan based nanocarriers. Biomaterials, 2011, 32, 4630-4638.	5.7	118
36	Polymer integrity related absorption mechanism of superporous hydrogel containing interpenetrating polymer networks for oral delivery of insulin. Biomaterials, 2010, 31, 3347-3356.	5.7	46

#	Article	IF	CITATIONS
37	Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010, 31, 3657-3666.	5.7	2,074
38	Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency. Journal of Controlled Release, 2010, 144, 46-54.	4.8	85
39	Preparation and evaluation of chitosanâ€ethylenediaminetetraacetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin. Journal of Biomedical Materials Research - Part A, 2009, 89A, 1063-1071.	2.1	45
40	Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials, 2009, 30, 5691-5700.	5.7	406
41	A polymeric composite carrier for oral delivery of peptide drugs: Bilaminated hydrogel film loaded with nanoparticles. European Polymer Journal, 2009, 45, 368-376.	2.6	31
42	Cytotoxicity and genotoxicity of superporous hydrogel containing interpenetrating polymer networks. Food and Chemical Toxicology, 2009, 47, 1139-1145.	1.8	40
43	Preparation, Characterization, and Oral Delivery of Insulin Loaded Carboxylated Chitosan Grafted Poly(methyl methacrylate) Nanoparticles. Biomacromolecules, 2009, 10, 1253-1258.	2.6	128
44	Biodegradable Nanoparticles Based on Linoleic Acid and Poly(β-malic acid) Double Grafted Chitosan Derivatives as Carriers of Anticancer Drugs. Biomacromolecules, 2009, 10, 565-572.	2.6	76
45	Polymer–protein interaction, water retention, and biocompatibility of a stimuliâ€sensitive superporous hydrogel containing interpenetrating polymer networks. Journal of Applied Polymer Science, 2008, 108, 1238-1248.	1.3	25
46	Preparation, characterization and biocompatibility of poly(ethylene glycol)-poly(n-butyl) Tj ETQq0 0 0 rgBT /Ove Journal, 2008, 44, 1654-1661.	rlock 10 T 2.6	f 50 387 Td (0 36
47	Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles. International Journal of Pharmaceutics, 2008, 350, 220-229.	2.6	66
48	Nanoparticles Incorporated in Bilaminated Films:  A Smart Drug Delivery System for Oral Formulations. Biomacromolecules, 2007, 8, 2845-2850.	2.6	37
49	Swelling behavior and biocompatibility of Carbopol-containing superporous hydrogel composites. Journal of Applied Polymer Science, 2007, 104, 2785-2791.	1.3	39
50	Novel chitosan derivative nanoparticles enhance the immunogenicity of a DNA vaccine encoding hepatitis B virus core antigen in mice. Journal of Gene Medicine, 2007, 9, 253-264.	1.4	54
51	Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticles. European Polymer Journal, 2007, 43, 2244-2253.	2.6	72
52	Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network–super-porous hydrogel containing sodium alginate. Polymer International, 2007, 56, 1563-1571.	1.6	62
53	Synthesis and Purification of Mono-PEGylated Insulin. Chemical Biology and Drug Design, 2007, 69, 132-138.	1.5	21
54	Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials, 2007, 28, 1258-1266.	5.7	269

#	Article	IF	CITATIONS
55	Chitosan Graft Copolymer Nanoparticles for Oral Protein Drug Delivery:  Preparation and Characterization. Biomacromolecules, 2006, 7, 2722-2727.	2.6	129
56	Preparation, characterization and enzyme inhibition of methylmethacrylate copolymer nanoparticles with different hydrophilic polymeric chains. European Polymer Journal, 2006, 42, 1653-1661.	2.6	14
57	Preparation and characterization of mucoadhesive polymer-coated nanoparticles. International Journal of Pharmaceutics, 2006, 316, 154-161.	2.6	106
58	New superporous hydrogels composites based on aqueous Carbopol® solution (SPHCcs): synthesis, characterization and in vitro bioadhesive force studies. European Polymer Journal, 2005, 41, 557-562.	2.6	45
59	HPLC determination of aminophylline, methoxyphenamine hydrochloride, noscapine and chlorphenamine maleate in compound dosage forms with an aqueous-organic mobile phase. Journal of Pharmaceutical and Biomedical Analysis, 2003, 33, 39-43.	1.4	35