
Aboubakr Medjahed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2534802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Single-Pass Large-Strain Rolling on Microstructure and Mechanical Properties of Al-3Li-1Cu-0.2Er-0.1Zr Alloy. Journal of Materials Engineering and Performance, 2022, 31, 3287-3298.	2.5	2
2	Effect of Li content on electromagnetic shielding effectiveness in binary Mg–Li alloys: a combined experimental and first-principles study. Journal of Materials Science: Materials in Electronics, 2022, 33, 3891-3900.	2.2	3
3	Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg-9Li-3Al alloy. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1453-1463.	4.9	41
4	Grain Refinement Behavior of Accumulative Roll Bonding-Processed Mg-14Li-3Al-2Gd Alloy. Journal of Materials Engineering and Performance, 2022, 31, 6617-6625.	2.5	3
5	A Novel Ordered B2 Particle Strengthened Mg–Li–Zn Alloy. Advanced Engineering Materials, 2022, 24, .	3.5	1
6	Simultaneously Improving Strength and Ductility of Mgâ^'3Liâ^'8Gdâ^'2Yâ^'1.5Ag Alloy by Solution Treatment and Hotâ€Rolling Process. Advanced Engineering Materials, 2021, 23, 2100530.	3.5	4
7	Preparation and Corrosion Performance of PPy/Silane Film on AZ31 Magnesium Alloy via One-Step Cyclic Voltammetry. Polymers, 2021, 13, 3148.	4.5	3
8	Microstructural evolution, precipitation behavior and mechanical properties of a novel Al–Zn–Mg–Cu–Li–Sc–Zr alloy. Journal of Materials Research, 2021, 36, 740-750.	2.6	11
9	Exploring the hybrid effects of short glass/basalt fibers on the mechanical, thermal and gamma-radiation shielding properties of DCBA/BA-a resin composites. Polymer-Plastics Technology and Materials, 2020, 59, 311-322.	1.3	7
10	Hybrid phthalonitrileâ€based materials with advanced mechanical and nuclear shielding performances. Polymer Composites, 2020, 41, 134-141.	4.6	15
11	Microstructure and Mechanical Properties of Mg–14Li–3Al–2Gd Alloy Processed by Multilayer Accumulative Roll Bonding. Advanced Engineering Materials, 2020, 22, 1900774.	3.5	6
12	Preparation and characterization of a new high-performance polymer composite and its application as a lead-free polymer-based projectile. High Performance Polymers, 2020, 32, 550-558.	1.8	4
13	Effects of the addition of Na 2 SnO 3 to NaCl electrolytes on Mgâ€14Liâ€3Alâ€1Gd electrode electrochemical behavior. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 564-570.	1.5	1
14	Improvement of electromagnetic shielding properties for Mg-8Li-6Y-2Zn alloy by heat treatment and hot rolling. Journal of Materials Science: Materials in Electronics, 2020, 31, 17249-17257.	2.2	6
15	Effect of TiC Content on Tensile Properties, Bend Strength, and Thermal Conductivity of Al-Li-Cu-Mg-Zr Alloy/TiC Composites Produced by Accumulative Roll Bonding. Journal of Materials Engineering and Performance, 2020, 29, 3253-3263.	2.5	2
16	Enhanced Electromagnetic Interference Shielding in a Duplex-Phase Mg–9Li–3Al–1Zn Alloy Processed by Accumulative Roll Bonding. Acta Metallurgica Sinica (English Letters), 2020, 33, 490-499.	2.9	83
17	Microstructure and Mechanical Properties of the Asâ€Cast AlLiCuMgZr Alloy with High Li Content and Different Cu/Mg Ratios. Advanced Engineering Materials, 2020, 22, 1901570.	3.5	2
18	High-performance polymer composites with enhanced mechanical and thermal properties from cyanate ester/benzoxazine resin and short Kevlar/glass hybrid fibers. High Performance Polymers, 2019, 31, 719-732.	1.8	18

#	Article	IF	CITATIONS
19	Effect of Annealing Temperature on the Microstructure and Mechanical Properties of the Al/Mg–8Li–3Al–1Zn/Al Composite Plates Fabricated by Hot Rolling. Physics of Metals and Metallography, 2019, 120, 447-453.	1.0	2
20	Evolution of Microstructure, Mechanical Properties, and Thermal Conductivity of an Al-Li-Cu-Mg-Zr Alloy Processed by Accumulative Roll Bonding (ARB). Jom, 2019, 71, 4096-4104.	1.9	5
21	Development of Hot-Extruded Mg–RE–Zn Alloy Bar with High Mechanical Properties. Materials, 2019, 12, 1722.	2.9	10
22	Hydrothermal Synthesis of Protective Coating on Mg Alloy for Degradable Implant Applications. Coatings, 2019, 9, 160.	2.6	11
23	Effects of Annealing on the Microstructures and Mechanical Properties of Cold-Rolled TB8 Alloy. Journal of Materials Engineering and Performance, 2019, 28, 2816-2825.	2.5	2
24	Processability and mechanical properties of surface-modified glass-fibres/phthalonitrile composite and Al–Li alloy fibre-metal-laminates. Materials Science and Technology, 2019, 35, 661-668.	1.6	6
25	Effects of Cold Rolling on Microstructural Evolution and Mechanical Properties of Mg–14Li–1Zn Alloy. Advanced Engineering Materials, 2019, 21, 1801344.	3.5	10
26	The Effect of Y/Er and Zn Addition on the Microstructure and Mechanical Properties of Mg-11Li Alloy. Materials, 2019, 12, 3066.	2.9	4
27	Impeding effect of the Al3(Er,Zr,Li) particles on planar slip and intergranular fracture mechanism of Al-3Li-1Cu-0.1Zr-X alloys. Materials Characterization, 2019, 147, 146-154.	4.4	36
28	Fabrication Process, Tensile, and Gamma Rays Shielding Properties of Newly Developed Fiber Metal Laminates Based on an Al–Li Alloy and Carbon Fibersâ€Tungsten Carbide Nanoparticles Reinforced Phthalonitrile Resin Composite. Advanced Engineering Materials, 2019, 21, 1800779.	3.5	8
29	Cost Effective Surfaceâ€Modified Basalt Fibersâ€Reinforced Phthalonitrile Composites With Improved Mechanical Properties and Advanced Nuclear Shielding Efficiency. Polymer Composites, 2019, 40, E912.	4.6	15
30	Mechanical and gamma rays shielding properties of a novel fiber-metal laminate based on a basalt/phthalonitrile composite and an Al-Li alloy. Composite Structures, 2019, 210, 421-429.	5.8	26
31	Microstructure and Hardness of Mg – 9Li – 6Al Alloy After Different Variants of Solid Solution Treatment. Metal Science and Heat Treatment, 2018, 59, 761-766.	0.6	3
32	Influence of fiber volume fractions on the performances of alkali modified hemp fibers reinforced cyanate ester/benzoxazine blend composites. Materials Chemistry and Physics, 2018, 213, 146-156.	4.0	38
33	Effects of Cu/Mg ratio on the microstructure, mechanical and corrosion properties of Al-Li-Cu-Mg-X alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 241-249.	5.6	55
34	Silane-modified carbon fibers reinforced cyanate ester/benzoxazine resin composites: Morphological, mechanical and thermal degradation properties. Vacuum, 2018, 150, 12-23.	3.5	36
35	High performance nanocomposites from Ti ₃ SiC ₂ MAX phase and phthalonitrile resin. Polymer Composites, 2018, 39, 3705-3711.	4.6	19
36	High-performance polymeric nanocomposites from phthalonitrile resin and silane surface–modified Ti ₃ AlC ₂ MAX phase. High Performance Polymers, 2018, 30, 427-436.	1.8	14

#	Article	IF	CITATIONS
37	Multifunctional polymer materials with enhanced mechanical, thermal and gamma radiation shielding properties from dicyanate ester of bisphenol-A/bisphenol-A based benzoxazine resin and short kevlar/basalt hybrid fibers. Journal of Polymer Research, 2018, 25, 1.	2.4	17
38	Synergistic effect of carbon nanotube and graphene nanoplatelet addition on microstructure and mechanical properties of AZ31 prepared using hot-pressing sintering. Journal of Materials Research, 2018, 33, 4261-4269.	2.6	11
39	Effect of Minor Er on the Microstructure and Properties of Al-6.0Mg-0.4Mn-0.1Cr-0.1Zr Alloys. Journal of Materials Engineering and Performance, 2018, 27, 5709-5717.	2.5	5
40	Effect of Sc and Zr on Microstructure and Mechanical Properties of As ast Al–Li–Cu Alloys. Advanced Engineering Materials, 2018, 20, 1700898.	3.5	17
41	Influence of the rolling direction on the microstructure, mechanical, anisotropy and gamma rays shielding properties of an Al-Cu-Li-Mg-X alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 129-137.	5.6	41
42	Simultaneous toughening and reinforcing of cyanate ester/benzoxazine resins with improved mechanical and thermal properties by using hyperbranched polyesters. Journal of Polymer Engineering, 2018, 38, 839-848.	1.4	6
43	Microstructure, Texture, and Mechanical Properties of Alternate <i>α</i> / <i>β</i> Mg–Li Composite Sheets Prepared by Accumulative Roll Bonding. Advanced Engineering Materials, 2017, 19, 1600817.	3.5	15
44	Achieving High Strength and Ductility in Magnesium Alloys via Densely Hierarchical Double Contraction Nanotwins. Nano Letters, 2017, 17, 6117-6124.	9.1	114
45	Microstructure and Mechanical Properties of CNT-Reinforced AZ31 Matrix Composites Prepared Using Hot-Press Sintering. Journal of Materials Engineering and Performance, 2017, 26, 5495-5500.	2.5	21
46	Microstructure and Mechanical Properties of Mg-8Li-(0, 1, 2)Ca-(0, 2)Gd Alloys. Journal of Materials Engineering and Performance, 2017, 26, 4831-4837.	2.5	7
47	Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy. International Journal of Materials Research, 2017, 108, 427-430.	0.3	2
48	Preparation of Fineâ€Grained and Highâ€Strength Mg–8Li–3Al–1Zn Alloy by Accumulative Roll Bonding. Advanced Engineering Materials, 2016, 18, 304-311.	3.5	40
49	Influence of Nd and Y on texture of as-extruded Mg–5Li–3Al–2Zn alloy. Physics of Metals and Metallography, 2016, 117, 735-741.	1.0	5
50	Influence of Annealing Temperature on the Microstructure and Mechanical Properties of Al/Mg/Al Composite Sheets Fabricated by Roll Bonding. Advanced Engineering Materials, 2016, 18, 1792-1798.	3.5	23
51	Al–RE Intermetallic Phase Stability and Effects on Corrosion Behavior in Coldâ€Chamber HPDC AE44 Alloy. Advanced Engineering Materials, 2016, 18, 148-155.	3.5	15
52	New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults. Scientific Reports, 2015, 5, 13933.	3.3	47
53	Microstructure Evolution and Hardness Variation of Mg-9Li-6Al-xLa (xÂ=Â0 and 2.0) Alloys Under Different Aging Parameters. Jom, 2015, 67, 2442-2449.	1.9	5
54	Development of Highâ€Performance Mg Alloy via Introducing Profuse Long Period Stacking Ordered Phase and Stacking Faults. Advanced Engineering Materials, 2015, 17, 876-884.	3.5	19

Aboubakr Medjahed

#	Article	IF	CITATIONS
55	Microstructure and texture evolution of Mg–Li alloy during rolling. International Journal of Materials Research, 2014, 105, 1111-1117.	0.3	7
56	Microstructures and corrosion resistance of three typical superlight Mg–Li alloys. International Journal of Materials Research, 2014, 105, 58-64.	0.3	4
57	Microstructure and Mechanical Properties of the As-Cast and Extruded Mg-(6-11)Li-3Al-Ce-Ca Alloys. Materials Transactions, 2010, 51, 1526-1530.	1.2	4
58	Influences of 1Âwt% La-rich RE addition and deformation processes on the alloy of Mg–6Li–1.5Al. Journal of Materials Science, 2010, 45, 4084-4087.	3.7	2
59	MECHANICAL PROPERTIES AND MICROSTRUCTURE OF Mg -5 Li -5 Al -3 Zn - xCd ALLOYS. International Journal of Modern Physics B, 2009, 23, 894-899.	2.0	3
60	ANALYSIS ON THE MICROSTRUCTURE OF THE AS-CAST AND EXTRUDED Mg-(6-10)Li-3Al-Ce-Ca ALLOYS. International Journal of Modern Physics B, 2009, 23, 920-926.	2.0	3
61	Study of hydrogen absorption of aluminum melt. International Journal of Materials Research, 2008, 99, 212-215.	0.3	1
62	Spray Degassing as a Method for Hydrogen Removal in Aluminum Melts. Materials Transactions, 2007, 48, 1029-1033.	1.2	4
63	The effects of purge gases on the hydrogen content and mechanical properties of spray-degassed Al. Jom, 2007, 59, 62-64.	1.9	2
64	Microstructure, Mechanical Properties and Strain Hardening Behavior of Alternative $\hat{1}\pm/\hat{1}^2$ Mg-Li Composite Sheets Prepared by Accumulative Roll Bonding. Metals and Materials International, 0, , 1.	3.4	2
65	Protective and Thermophysical Characteristics of Plasma-Electrolytic Coatings on the Ultra-Light Magnesium Alloy. Journal of Engineering Materials and Technology, Transactions of the ASME, 0, , 1-15.	1.4	5