Nuri Oncel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2534499/nuri-oncel-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39	556	14	22
papers	citations	h-index	g-index
39	654 ext. citations	4.5	3.65
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
39	In Situ Synthesis of Graphene-Coated Silicon Monoxide Anodes from Coal-Derived Humic Acid for High-Performance Lithium-Ion Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2101645	15.6	9
38	One-pot synthesis of graphene quantum dots using humic acid and its application for copper (II) ion detection. <i>Journal of Materials Science</i> , 2021 , 56, 4991-5005	4.3	10
37	CrSi2 crystallites on Si(110). Surface Science, 2021 , 703, 121739	1.8	
36	Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for Cell Imaging and Metal Ion Detection. <i>ACS Applied Materials & Detection (Material & Material </i>	9.5	8
35	Structural Evolution of Organic Matter in Deep Shales by Spectroscopy (1H and 13C Nuclear Magnetic Resonance, X-ray Photoelectron Spectroscopy, and Fourier Transform Infrared) Analysis. <i>Energy & Description of Energy & De</i>	4.1	14
34	First-principles study of electron dynamics with explicit treatment of momentum dispersion on Si nanowires along different directions. <i>Molecular Physics</i> , 2019 , 117, 2293-2302	1.7	6
33	Photoexcited Electron Lifetimes Influenced by Momentum Dispersion in Silicon Nanowires. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 7457-7466	3.8	8
32	Silicene-Like Domains on IrSi3 Crystallites. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 7225-7229	3.8	3
31	Adsorption of Formic Acid on CH3NH3PbI3 LeadHalide OrganicIhorganic Perovskites. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 22873-22886	3.8	3
30	Time-resolved Optical Properties of SiNW Oriented in Crystallographic Direction. <i>MRS Advances</i> , 2019 , 4, 2009-2014	0.7	2
29	Study of iridium silicide monolayers using density functional theory. <i>Journal of Applied Physics</i> , 2018 , 123, 074301	2.5	O
28	First-Principles Study of Charge Carrier Dynamics with Explicit Treatment of Momentum Dispersion on Si Nanowires along crystallographic Directions. <i>MRS Advances</i> , 2018 , 3, 3477-3482	0.7	6
27	Coulomb blockade and negative differential resistance at room temperature: Self-assembled quantum dots on Si (110) surface. <i>Surface Science</i> , 2018 , 677, 12-17	1.8	1
26	Scanning tunneling microscopy/spectroscopy measurements and density functional theory calculations on self-assembled monolayer of octanoic acid on graphite. <i>Thin Solid Films</i> , 2017 , 623, 135-	137	5
25	Intercalation of Si between MoS layers. <i>Beilstein Journal of Nanotechnology</i> , 2017 , 8, 1952-1960	3	20
24	On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface. <i>Journal of Applied Physics</i> , 2016 , 120, 095303	2.5	8
23	IridiumBilicide nanowires on Si(110) surface. <i>Surface Science</i> , 2015 , 641, 237-241	1.8	4

(2006-2015)

22	Scanning Tunneling Microscopy and Density Functional Theory Study on Zinc(II)-Phthalocyanine Tetrasulfonic Acid on Bilayer Epitaxial Graphene on Silicon Carbide(0001). <i>Journal of Physical Chemistry C</i> , 2015 , 119, 9845-9850	3.8	4
21	Angle-resolved synchrotron photoemission and density functional theory on the iridium modified Si(1 1 1) surface. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 285501	1.8	3
20	Electronically stabilized nanowire growth. <i>Nature Communications</i> , 2013 , 4, 2387	17.4	28
19	A scanning tunneling microscopy study on self-assembled Fe(III) meso-tetra(4-carboxyphenyl) porphyrin chloride chains. <i>Thin Solid Films</i> , 2013 , 534, 308-311	2.2	2
18	Iridium silicide nanowires on Si(001) surfaces. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 014010	1.8	7
17	Iridium-modified Si(111) surface. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 445004	1.8	5
16	5-(Octadecyloxy) Isophthalic Acid-Assisted Copper(II) meso-Tetra (4-Carboxyphenyl) Porphyrin Adsorption on Highly Ordered Pyrolytic Graphite. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 14983-149	983 ⁸	8
15	Hydrogen-bonding versus van der Waals interactions in self-assembled monolayers of substituted isophthalic acids. <i>Langmuir</i> , 2010 , 26, 18155-61	4	35
14	Higher-order complexity through R-group effects in self-assembled tripeptide monolayers. <i>Langmuir</i> , 2010 , 26, 16287-90	4	4
13	Effects of organic film morphology on the formation of Rb clusters on surface coatings in alkali metal vapor cells. <i>Applied Physics Letters</i> , 2009 , 94, 041116	3.4	14
12	Ni(II)- and vanadyloctaethylporphyrin self-assembled layers formed on bare and 5-(octadecyloxy)isophthalic acid covered graphite. <i>Langmuir</i> , 2009 , 25, 9290-5	4	8
11	Atomic chains on surfaces. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 393001	1.8	27
10	The effect of molecule-molecule and molecule-substrate interaction in the formation of Pt-octaethyl porphyrin self-assembled monolayers. <i>Applied Physics Letters</i> , 2008 , 92, 133305	3.4	19
9	Peierls instability in Pt chains on Ge(001). Surface Science, 2008, 602, 1731-1735	1.8	49
8	Metal induced gap states on Pt-modified Ge(001) surfaces. New Journal of Physics, 2007, 9, 449-449	2.9	3
7	Spatial mapping of the electronic states of a one-dimensional system. <i>Nano Letters</i> , 2006 , 6, 1439-42	11.5	27
6	Room-temperature single-electron tunneling in dendrimer-stabilized gold nanoparticles anchored at a molecular printboard. <i>Small</i> , 2006 , 2, 1422-6	11	23
5	Diffusion and binding of CO on Pt nanowires. <i>Surface Science</i> , 2006 , 600, 4690-4693	1.8	17

4	Coulomb blockade of small Pd clusters. <i>Journal of Chemical Physics</i> , 2005 , 123, 044703	3.9	14
3	Noble metal nanoparticles deposited on self-assembled monolayers by pulsed laser deposition show coulomb blockade at room temperature. <i>Small</i> , 2005 , 1, 395-8	11	22
2	Quantum confinement between self-organized Pt nanowires on Ge(001). <i>Physical Review Letters</i> , 2005 , 95, 116801	7.4	94
1	Inelastic Electron Tunneling Spectroscopy on Decanethiol at Elevated Temperatures. <i>Nano Letters</i> , 2004 , 4, 2393-2395	11.5	36