Maria J Rivero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2534307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chemical Engineering Journal, 2017, 310, 407-427.	6.6	247
2	Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, 2008, 153, 834-842.	6.5	173
3	Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2 â^'rGO catalyst. Journal of Hazardous Materials, 2018, 344, 950-957.	6.5	159
4	Ammonium removal from landfill leachate by anodic oxidation. Journal of Hazardous Materials, 2007, 144, 715-719.	6.5	141
5	Comprehensive review and future perspectives on the photocatalytic hydrogen production. Journal of Chemical Technology and Biotechnology, 2019, 94, 3049-3063.	1.6	136
6	Membrane-based photocatalytic systems for process intensification. Chemical Engineering Journal, 2016, 305, 136-148.	6.6	120
7	Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. Journal of Hazardous Materials, 2019, 372, 45-51.	6.5	113
8	TiO2 structures doped with noble metals and/or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid. Environmental Science and Pollution Research, 2017, 24, 12628-12637.	2.7	72
9	Nitrate removal from electro-oxidized landfill leachate by ion exchange. Journal of Hazardous Materials, 2009, 164, 389-393.	6.5	69
10	Photocatalytic oxidation of grey water over titanium dioxide suspensions. Desalination, 2010, 262, 141-146.	4.0	67
11	An Integrated Process, Fenton Reactionâ^'Ultrafiltration, for the Treatment of Landfill Leachate:  Pilot Plant Operation and Analysis. Industrial & Engineering Chemistry Research, 2008, 47, 946-952.	1.8	59
12	LCA of greywater management within a water circular economy restorative thinking framework. Science of the Total Environment, 2018, 621, 1047-1056.	3.9	56
13	Influence of radiation and TiO2 concentration on the hydroxyl radicals generation in a photocatalytic LED reactor. Application to dodecylbenzenesulfonate degradation. Applied Catalysis B: Environmental, 2015, 178, 165-169.	10.8	53
14	Kinetic performance of TiO2/Pt/reduced graphene oxide composites in the photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 101-109.	3.8	51
15	Unravelling the Mechanisms that Drive the Performance of Photocatalytic Hydrogen Production. Catalysts, 2020, 10, 901.	1.6	45
16	Kinetics of dodecylbenzenesulphonate mineralisation by TiO2 photocatalysis. Applied Catalysis B: Environmental, 2011, 101, 515-521.	10.8	43
17	Critical Issues and Guidelines to Improve the Performance of Photocatalytic Polymeric Membranes. Catalysts, 2020, 10, 570.	1.6	41
18	Membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment. Water Science and Technology, 2006, 53, 173-180.	1.2	39

MARIA J RIVERO

#	Article	IF	CITATIONS
19	Modelling of Cr(VI) removal from polluted groundwaters by ion exchange. Journal of Chemical Technology and Biotechnology, 2004, 79, 822-829.	1.6	35
20	Modelling photodegradation in the global carbon cycle. Soil Biology and Biochemistry, 2011, 43, 1383-1386.	4.2	33
21	Performance of electrochemical oxidation and photocatalysis in terms of kinetics and energy consumption. New insights into the p-cresol degradation. Journal of Environmental Management, 2017, 195, 117-124.	3.8	33
22	An efficient catalytic process for the treatment of genotoxic aniline wastewater using a new granular activated carbon-supported titanium dioxide composite. Journal of Cleaner Production, 2019, 228, 1282-1295.	4.6	31
23	Comparative performance of TiO2-rGO photocatalyst in the degradation of dichloroacetic and perfluorooctanoic acids. Separation and Purification Technology, 2020, 240, 116637.	3.9	29
24	Kinetic modeling and energy evaluation of sodium dodecylbenzenesulfonate photocatalytic degradation in a new LED reactor. Journal of Industrial and Engineering Chemistry, 2016, 37, 237-242.	2.9	28
25	Mathematical modelling of phenol photooxidation: Kinetics of the process toxicity. Chemical Engineering Journal, 2007, 134, 23-28.	6.6	27
26	Challenges arising from the use of TiO2/rGO/Pt photocatalysts to produce hydrogen from crude glycerol compared to synthetic glycerol. International Journal of Hydrogen Energy, 2019, 44, 28494-28506.	3.8	27
27	Mathematical modelling of styrene drying by adsorption onto activated alumina. Chemical Engineering Science, 2002, 57, 2589-2592.	1.9	25
28	Coupling of the electrochemical oxidation (EO-BDD)/photocatalysis (TiO2-Fe-N) processes for degradation of acid blue BR dye. Journal of Electroanalytical Chemistry, 2018, 808, 180-188.	1.9	25
29	Magnetically recoverable TiO2-WO3 photocatalyst to oxidize bisphenol A from model wastewater under simulated solar light. Environmental Science and Pollution Research, 2017, 24, 12589-12598.	2.7	22
30	New insights in the performance and reuse of rGO/TiO2 composites for the photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 17500-17506.	3.8	21
31	Enhanced photocatalytic activity using GO/TiO2 catalyst for the removal of DCA solutions. Environmental Science and Pollution Research, 2018, 25, 34893-34902.	2.7	20
32	Analysis of a Hybrid Suspended-Supported Photocatalytic Reactor for the Treatment of Wastewater Containing Benzothiazole and Aniline. Water (Switzerland), 2019, 11, 337.	1.2	20
33	Performance of rGO/TiO2 Photocatalytic Membranes for Hydrogen Production. Membranes, 2020, 10, 218.	1.4	18
34	Kinetic analysis and biodegradability of the Fenton mineralization of bisphenol A. Journal of Chemical Technology and Biotechnology, 2014, 89, 1228-1234.	1.6	15
35	TiO2–Zeolite Metal Composites for Photocatalytic Degradation of Organic Pollutants in Water. Catalysts, 2021, 11, 1367.	1.6	15
36	Mobile learning in chemical engineering: An outlook based on case studies. Education for Chemical Engineers, 2021, 35, 132-145.	2.8	14

MARIA J RIVERO

#	Article	IF	CITATIONS
37	Hollow Fiber Membranes of PCL and PCL/Graphene as Scaffolds with Potential to Develop In Vitro Blood—Brain Barrier Models. Membranes, 2020, 10, 161.	1.4	13
38	Education of chemical engineering in Spain: A global picture. Education for Chemical Engineers, 2018, 24, 27-31.	2.8	11
39	Heterogeneous Catalytic Ozonation of Aniline-Contaminated Waters: A Three-Phase Modelling Approach Using TiO2/GAC. Water (Switzerland), 2020, 12, 3448.	1.2	9
40	Assessing the feasibility of reduced graphene oxide as an electronic promoter for photocatalytic hydrogen production over Nb-Ta perovskite photocatalysts. Catalysis Today, 2021, 362, 22-27.	2.2	9
41	Analysis of the elimination process of polymerisation inhibitors from styrene by means of adsorption. Journal of Chemical Technology and Biotechnology, 2003, 78, 64-72.	1.6	8
42	Effect of dye auxiliaries on the kinetics of advanced oxidation UV/H ₂ O ₂ of Acid Orange 7 (AO7). Journal of Chemical Technology and Biotechnology, 2008, 83, 1339-1346.	1.6	8
43	Influence of QD photosensitizers in the photocatalytic production of hydrogen with biomimetic [FeFe]-hydrogenase. Comparative performance of CdSe and CdTe. Chemosphere, 2021, 278, 130485.	4.2	8
44	Comprehensive Kinetics of the Photocatalytic Degradation of Emerging Pollutants in a LED-Assisted Photoreactor. S-Metolachlor as Case Study. Catalysts, 2021, 11, 48.	1.6	7
45	Scale-up of adsorptive styrene drying. Polymer International, 2002, 51, 792-799.	1.6	6
46	Advanced oxidative and catalytic processes. , 2019, , 161-201.		6
47	Integration of Electrochemical Advanced Oxidation With Membrane Separation and Biodegradation. , 2018, , 495-510.		4
48	Non-homogeneous dispersion of graphene in polyacrylonitrile substrates induces a migrastatic response and epithelial-like differentiation in MCF7 breast cancer cells. Cancer Nanotechnology, 2022, 13, .	1.9	3
49	Reprint of: Education of chemical engineering in Spain: A global picture. Education for Chemical Engineers, 2019, 26, 2-7.	2.8	2
50	Removal of Aniline and Benzothiazole Wastewaters Using an Efficient MnO2/GAC Catalyst in a Photocatalytic Fluidised Bed Reactor. Materials, 2021, 14, 5207.	1.3	2
51	Electrochemical Oxidation of Two Phenolic Compounds: Evaluation of Kinetics and Energy Consumption. ECS Transactions, 2019, 94, 181-187.	0.3	1
52	Kinetic Modeling of the Photocatalytic Oxidation of Sodium Dodecylbenzenesulphonate. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	0
53	Chemical Engineering European Project Semester: an international proposal for teaching Chemical Engineering. @tic: Revista D'Innovació Educativa, 2014,	0.3	0
54	Improved Performance of a Newly Synthesized Magnetite Photocatalyst for S-Metolachlor Degradation. , 0, , .		0