Stefano Sanvito

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2534209/stefano-sanvito-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 19,551 131 371 h-index g-index citations papers 6.1 21,868 7.28 395 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
371	DFT-NEGF simulation study of Co2FeAl-MgO-Co2FeAl magnetic tunnel junctions under biaxial strain. <i>IEEE Transactions on Magnetics</i> , 2022 , 1-1	2	
370	High-Performance Spin Filters Based on 1,2,4,5-Tetrahydroxybenzene Molecules Attached to Bulk Nickel Electrodes. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 6945-6953	3.8	4
369	Data-driven enhancement of cubic phase stability in mixed-cation perovskites. <i>Machine Learning: Science and Technology</i> , 2021 , 2, 025030	5.1	3
368	The rise of Nb-, Ta-, and Bi-based oxides/chalcogenides for photocatalytic applications. <i>International Journal of Hydrogen Energy</i> , 2021 , 47, 3358-3358	6.7	1
367	Using Weakly Supervised Deep Learning to Classify and Segment Single-Molecule Break-Junction Conductance Traces. <i>ChemPhysChem</i> , 2021 , 22, 2107-2114	3.2	O
366	Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB monolayer. <i>Nanoscale Horizons</i> , 2021 , 6, 43-48	10.8	19
365	First-principles prediction of polar half-metallicity and out-of-plane piezoelectricity in two-dimensional quintuple layered cobalt selenide. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 12046-12	.030 ¹	2
364	High-throughput bandstructure simulations of van der Waals hetero-bilayers formed by 1T and 2H monolayers. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	4
363	Prediction of the two-dimensional Janus ferrovalley material LaBrI. <i>Physical Review B</i> , 2021 , 104,	3.3	5
362	In Situ Tuning of the Charge-Carrier Polarity in Imidazole-Linked Single-Molecule Junctions. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 7596-7604	6.4	O
361	Purely one-dimensional ferroelectricity and antiferroelectricity from van der Waals niobium oxide trihalides. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	2
360	The nanoscale structure of the Pt-water double layer under bias revealed. <i>Electrochimica Acta</i> , 2021 , 391, 138875	6.7	8
359	Atomistic simulations of surface reactions in ultra-high-temperature ceramics: O2, H2O and CO adsorption and dissociation on ZrB2(0001) surfaces. <i>Applied Surface Science</i> , 2021 , 566, 150622	6.7	1
358	Effect of a ferromagnetic STM cobalt tip on a single Co-phthalocyanine molecule adsorbed on a ferromagnetic substrate. <i>Physics Open</i> , 2021 , 9, 100088	1.6	
357	Interfacing 2D VS2 with Janus MoSSe: Antiferromagnetic electric polarization and charge transfer driven Half-metallicity. <i>Applied Surface Science</i> , 2021 , 570, 151129	6.7	1
356	Computational prediction of a two-dimensional semiconductor SnO2 with negative Poisson's ratio and tunable magnetism by doping. <i>Physical Review B</i> , 2020 , 102,	3.3	4
355	Multiple spin-phonon relaxation pathways in a Kramer single-ion magnet. <i>Journal of Chemical Physics</i> , 2020 , 153, 174113	3.9	17

(2020-2020)

354	Neutral excitation density-functional theory: an efficient and variational first-principles method for simulating neutral excitations in molecules. <i>Scientific Reports</i> , 2020 , 10, 8947	4.9	9	
353	The 2020 magnetism roadmap. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 453001	3	77	
352	Edge superconductivity in multilayer WTe Josephson junction. <i>National Science Review</i> , 2020 , 7, 1468-1	475 .8	10	
351	Machine Learning Accelerated Recovery of the Cubic Structure in Mixed-Cation Perovskite Thin Films. <i>Chemistry of Materials</i> , 2020 , 32, 2998-3006	9.6	24	
350	Importance of structural deformation features in the prediction of hybrid perovskite bandgaps. <i>Computational Materials Science</i> , 2020 , 184, 109858	3.2	9	
349	Surfing Multiple Conformation-Property Landscapes via Machine Learning: Designing Single-Ion Magnetic Anisotropy. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 5802-5806	3.8	11	
348	Pushing the limits of atomistic simulations towards ultra-high temperature: A machine-learning force field for ZrB2. <i>Acta Materialia</i> , 2020 , 186, 467-474	8.4	7	
347	First-Principles Study of Electromigration in the Metallic Liquid State of GeTe and Sb2Te3 Phase-Change Compounds. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 9599-9603	3.8	6	
346	Electric-controlled half-metallicity in magnetic van der Waals heterobilayer. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 7034-7040	7.1	16	
345	Unveiling phonons in a molecular qubit with four-dimensional inelastic neutron scattering and density functional theory. <i>Nature Communications</i> , 2020 , 11, 1751	17.4	23	
344	Electric field modulation of magnetism in ferrimagnetic Heusler heterostructures. <i>Physical Review B</i> , 2020 , 101,	3.3	11	
343	Ferroelectric control of electron half-metallicity in A-type antiferromagnets and its application to nonvolatile memory devices. <i>Physical Review B</i> , 2020 , 102,	3.3	3	
342	Theoretical investigation of the structural, elastic, electronic, and dielectric properties of alkali-metal-based bismuth ternary chalcogenides. <i>Physical Review Materials</i> , 2020 , 4,	3.2	4	
341	The AFLOW Fleet for Materials Discovery 2020 , 1785-1812		1	
340	Time-Dependent Density Functional Theory for Spin Dynamics 2020 , 841-866		2	
339	Machine Learning and High-Throughput Approaches to Magnetism 2020 , 351-373		1	
338	First-principles study of a Mn-doped In2Se3 monolayer: Coexistence of ferromagnetism and ferroelectricity with robust half-metallicity and enhanced polarization. <i>Physical Review B</i> , 2020 , 102,	3.3	10	
337	The Limit of Spin Lifetime in Solid-State Electronic Spins. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 6273-6278	6.4	15	

336	Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides. <i>Npj 2D Materials and Applications</i> , 2020 , 4,	8.8	17
335	Photovoltage from ferroelectric domain walls in BiFeO3. <i>Physical Review B</i> , 2020 , 102,	3.3	1
334	How do phonons relax molecular spins?. Science Advances, 2019, 5, eaax7163	14.3	34
333	Exploring new approaches towards the formability of mixed-ion perovskites by DFT and machine learning. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 1078-1088	3.6	29
332	Dirac-cone induced gating enhancement in single-molecule field-effect transistors. <i>Nanoscale</i> , 2019 , 11, 13117-13125	7.7	8
331	A unified picture of the covalent bond within quantum-accurate force fields: From organic molecules to metallic complexes' reactivity. <i>Science Advances</i> , 2019 , 5, eaaw2210	14.3	14
330	Electronic spin-spin decoherence contribution in molecular qubits by quantum unitary spin dynamics. <i>Journal of Magnetism and Magnetic Materials</i> , 2019 , 487, 165325	2.8	7
329	Shaping and Storing Magnetic Data Using Pulsed Plasmonic Nanoheating and Spin-Transfer Torque. <i>ACS Photonics</i> , 2019 , 6, 1524-1532	6.3	4
328	The AFLOW Fleet for Materials Discovery 2019 , 1-28		
327	Ultrahigh conductivity in Weyl semimetal NbAs nanobelts. <i>Nature Materials</i> , 2019 , 18, 482-488	27	40
327 326	Ultrahigh conductivity in Weyl semimetal NbAs nanobelts. <i>Nature Materials</i> , 2019 , 18, 482-488 Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6017-6021	27 16.4	40
	Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie</i> -		
326	Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6017-6021	16.4	11
326 325	Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6017-6021 Impurity band magnetism in organic semiconductors. <i>Physical Review B</i> , 2019 , 99, Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie</i> ,	16.4 3·3	11 4
326 325 324	Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6017-6021 Impurity band magnetism in organic semiconductors. <i>Physical Review B</i> , 2019 , 99, Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie</i> , 2019 , 131, 6078-6082 Synthesis of centimeter-size free-standing perovskite nanosheets from single-crystal lead bromide	16.4 3.3 3.6	11 4 4
326 325 324 323	Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6017-6021 Impurity band magnetism in organic semiconductors. <i>Physical Review B</i> , 2019 , 99, Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie</i> , 2019 , 131, 6078-6082 Synthesis of centimeter-size free-standing perovskite nanosheets from single-crystal lead bromide for optoelectronic devices. <i>Scientific Reports</i> , 2019 , 9, 11738 Self-Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus.	3.3 3.6 4.9	11 4 4
326 325 324 323 322	Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6017-6021 Impurity band magnetism in organic semiconductors. <i>Physical Review B</i> , 2019 , 99, Silver Tarnishing Mechanism Revealed by Molecular Dynamics Simulations. <i>Angewandte Chemie</i> , 2019 , 131, 6078-6082 Synthesis of centimeter-size free-standing perovskite nanosheets from single-crystal lead bromide for optoelectronic devices. <i>Scientific Reports</i> , 2019 , 9, 11738 Self-Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus. <i>Advanced Functional Materials</i> , 2019 , 29, 1903120 First-Principles Investigation of Spin-Phonon Coupling in Vanadium-Based Molecular Spin Quantum	16.4 3.3 3.6 4.9 15.6	11 4 4 7

(2018-2019)

318	Predicting the Curie temperature of ferromagnets using machine learning. <i>Physical Review Materials</i> , 2019 , 3,	3.2	26
317	Interlayer dielectric function of a type-II van der Waals semiconductor: The HfS2/PtS2 heterobilayer. <i>Physical Review Materials</i> , 2019 , 3,	3.2	4
316	Molecular Spintronics 2019 , 359-382		
315	Enhancing the electronic dimensionality of hybrid organic i horganic frameworks by hydrogen bonded molecular cations. <i>Materials Horizons</i> , 2019 , 6, 1187-1196	14.4	3
314	Machine learning density functional theory for the Hubbard model. <i>Physical Review B</i> , 2019 , 99,	3.3	21
313	Role of longitudinal fluctuations in L10 FePt. <i>Physical Review B</i> , 2019 , 100,	3.3	2
312	Quantum Hall effect based on Weyl orbits in CdAs. <i>Nature</i> , 2019 , 565, 331-336	50.4	116
311	Nontrivial spatial dependence of the spin torques in L10 FePt-based tunneling junctions. <i>Physical Review B</i> , 2019 , 99,	3.3	1
310	First-Principles Prediction of a Room-Temperature Ferromagnetic Janus VSSe Monolayer with Piezoelectricity, Ferroelasticity, and Large Valley Polarization. <i>Nano Letters</i> , 2019 , 19, 1366-1370	11.5	155
309	Materials informatics. <i>Journal of Intelligent Manufacturing</i> , 2019 , 30, 2307-2326	6.7	50
308	Proposal for a Dual Spin Filter Based on [VO(C3S4O)2]2[]Journal of Physical Chemistry C, 2018, 122, 641	7 ₃ 68121	5
307	Searching for Photoactive Polymorphs of CsNbQ3 (Q = O, S, Se, Te) with Enhanced Optical Properties and Intrinsic Thermodynamic Stabilities. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 8814-882	.3.8	8
306	First-principles investigation of the thermodynamic stability of MB2 materials surfaces (MI=ITi/Zr/Hf). <i>Journal of the American Ceramic Society</i> , 2018 , 101, 4118-4127	3.8	7
305	A simple descriptor for energetics at fcc-bcc metal interfaces. <i>Materials and Design</i> , 2018 , 142, 158-165	8.1	9
304	Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films. <i>Physical Review B</i> , 2018 , 97,	3.3	7
303	Electron P honon Coupling and Polaron Mobility in Hybrid Perovskites from First Principles. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 1361-1366	3.8	18
302	Ab initio surface properties of Ag-Sn alloys: implications for lead-free soldering. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 4277-4286	3.6	4
301	Spin injection and magnetoresistance in MoS-based tunnel junctions using FeSi Heusler alloy electrodes. <i>Scientific Reports</i> , 2018 , 8, 4779	4.9	11

300	Computational investigation of label free detection of biomolecules based on armchair graphene nanoribbon. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 1276-1284	8.5	7
299	Search for alternative magnetic tunnel junctions based on all-Heusler stacks. <i>Physical Review B</i> , 2018 , 98,	3.3	8
298	Inducing Strong Superconductivity in WTe by a Proximity Effect. ACS Nano, 2018, 12, 7185-7196	16.7	26
297	Elucidating the Impact of Chalcogen Content on the Photovoltaic Properties of Oxychalcogenide Perovkskites: NaMO Q (M=Nb, Ta; Q=S, Se, Te). <i>ChemPhysChem</i> , 2018 , 19, 703-714	3.2	12
296	The AFLOW Fleet for Materials Discovery 2018 , 1-28		9
295	Electron trapping by neutral pristine ferroelectric domain walls in BiFeO3. <i>Physical Review B</i> , 2018 , 98,	3.3	6
294	Time-Dependent Density Functional Theory for Spin Dynamics 2018, 1-26		1
293	Spin-phonon coupling parameters from maximally localized Wannier functions and first-principles electronic structure: Single-crystal durene. <i>Physical Review B</i> , 2018 , 98,	3.3	4
292	Machine Learning and High-Throughput Approaches to Magnetism 2018, 1-23		2
291	AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis. <i>Journal of Chemical Information and Modeling</i> , 2018 , 58, 2477-2490	6.1	43
2 90	Wannier-function-based constrained DFT with nonorthogonality-correcting Pulay forces in application to the reorganization effects in graphene-adsorbed pentacene. <i>Physical Review B</i> , 2018 , 97,	3.3	4
289	Effect of molecular conformations on the electronic transport in oxygen-substituted alkanethiol molecular junctions. <i>Journal of Chemical Physics</i> , 2018 , 148, 184703	3.9	3
288	Solar Cell Materials by Design: Hybrid Pyroxene Corner-Sharing VO Tetrahedral Chains. <i>ChemSusChem</i> , 2017 , 10, 1931-1942	8.3	8
287	Spin-orbit Hamiltonian for organic crystals from first-principles electronic structure and Wannier functions. <i>Physical Review B</i> , 2017 , 95,	3.3	6
286	Accelerated discovery of new magnets in the Heusler alloy family. Science Advances, 2017, 3, e1602241	14.3	141
285	Theoretical Evaluation of [V(ECS)] as Nuclear-Spin-Sensitive Single-Molecule Spin Transistor. Journal of Physical Chemistry Letters, 2017, 8, 3056-3060	6.4	9
284	Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide. <i>ACS Nano</i> , 2017 , 11, 6389-6395	16.7	40
283	First-principles spin-transfer torque in CuMnAs GaP CuMnAs junctions. <i>Physical Review B</i> , 2017 , 95,	3.3	20

(2016-2017)

282	Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal CdAs. <i>Nature Communications</i> , 2017 , 8, 1272	17.4	77
281	Strain-induced Weyl and Dirac states and direct-indirect gap transitions in group-V materials. <i>2D Materials</i> , 2017 , 4, 045018	5.9	16
280	Ultrafast demagnetizing fields from first principles. <i>Physical Review B</i> , 2017 , 95,	3.3	10
279	Evidence for pressure-induced node-pair annihilation in Cd3As2. <i>Physical Review B</i> , 2017 , 96,	3.3	7
278	Femtosecond Spin Current Pulses Generated by the Nonthermal Spin-Dependent Seebeck Effect and Interacting with Ferromagnets in Spin Valves. <i>Physical Review Letters</i> , 2017 , 119, 017202	7.4	58
277	An in situ and ex situ TEM study into the oxidation of titanium (IV) sulphide. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	15
276	Intra-molecular origin of the spin-phonon coupling in slow-relaxing molecular magnets. <i>Chemical Science</i> , 2017 , 8, 6051-6059	9.4	112
275	The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes. <i>Journal of Chemical Physics</i> , 2017 , 147, 054702	3.9	8
274	Ab initio dynamical exchange interactions in frustrated antiferromagnets. <i>Physical Review B</i> , 2017 , 96,	3.3	6
273	Multiscale modeling of current-induced switching in magnetic tunnel junctions using ab initio spin-transfer torques. <i>Physical Review B</i> , 2017 , 96,	3.3	16
272	Tailoring the Polarity of Charge Carriers in Graphene Porphine Graphene Molecular Junctions through Linkage Motifs. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 27344-27350	3.8	10
271	First-Principles Prediction of Spin-Polarized Multiple Dirac Rings in Manganese Fluoride. <i>Physical Review Letters</i> , 2017 , 119, 016403	7.4	64
270	Resistive switching mechanism of GeTe-SbTe interfacial phase change memory and topological properties of embedded two-dimensional states. <i>Nanoscale</i> , 2017 , 9, 9386-9395	7.7	32
269	HfO2 and SiO2 as barriers in magnetic tunneling junctions. <i>Physical Review B</i> , 2017 , 95,	3.3	2
268	Influence of the dipolar interactions on the relative stability in spin crossover systems. <i>Journal of Computational Chemistry</i> , 2017 , 38, 224-227	3.5	2
267	The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets. Nature Communications, 2017, 8, 14620	17.4	215
266	Observation of quasi-two-dimensional Dirac fermions in ZrTe5. NPG Asia Materials, 2016, 8, e325-e325	10.3	41
265	Persistent current and Drude weight of one-dimensional interacting fermions on imperfect ring from current lattice density functional theory. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 445601	1.8	1

264	Current-induced phonon renormalization in molecular junctions. <i>Physical Review B</i> , 2016 , 94,	3.3	8
263	Vertical Single-Crystalline Organic Nanowires on Graphene: Solution-Phase Epitaxy and Optical Microcavities. <i>Nano Letters</i> , 2016 , 16, 4754-62	11.5	20
262	Designing a fully compensated half-metallic ferrimagnet. <i>Physical Review B</i> , 2016 , 93,	3.3	26
261	Fundamental gap of molecular crystals via constrained density functional theory. <i>Physical Review B</i> , 2016 , 93,	3.3	13
260	Exploring the cation dynamics in lead-bromide hybrid perovskites. <i>Physical Review B</i> , 2016 , 93,	3.3	35
259	Charge transfer energies of benzene physisorbed on a graphene sheet from constrained density functional theory. <i>Physical Review B</i> , 2016 , 93,	3.3	10
258	Origin of the periodic structure in the conductance curve of gold nanojunctions in hydrogen environment. <i>Physical Review B</i> , 2016 , 93,	3.3	1
257	Effects of molecular dipole orientation on the exciton binding energy of CH3NH3PbI3. <i>Physical Review B</i> , 2016 , 94,	3.3	6
256	Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5. <i>Nature Communications</i> , 2016 , 7, 12516	17.4	108
255	Dimensionality-driven phonon softening and incipient charge density wave instability in TiS 2. <i>Europhysics Letters</i> , 2016 , 115, 47001	1.6	31
254	Charge and spin transport in single and packed ruthenium-terpyridine molecular devices: Insight from first-principles calculations. <i>Scientific Reports</i> , 2016 , 6, 31856	4.9	4
253	Tunneling magnetoresistance in Si nanowires. New Journal of Physics, 2016, 18, 113024	2.9	O
252	Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules. <i>Nature Communications</i> , 2016 , 7, 12668	17.4	39
251	Predicting Single-Layer Technetium Dichalcogenides (TcXIIX = S, Se) with Promising Applications in Photovoltaics and Photocatalysis. <i>ACS Applied Materials & District Amplied Materials & Dis</i>	9.5	78
250	The oxidation of gallium (II) sulphide 2016 , 528-529		
249	Quantitative Interpretation of the Low-Bias Conductance of Au-Mesitylene-Au Molecular Junctions Formed from Mesitylene Monolayers. <i>ChemPhysChem</i> , 2016 , 17, 2272-7	3.2	3
248	Effects of the molecule-electrode interface on the low-bias conductance of Cu-H2-Cu single-molecule junctions. <i>Journal of Chemical Physics</i> , 2016 , 145, 044701	3.9	4
247	Cu-metalated carbyne acting as a promising molecular wire. Journal of Chemical Physics, 2016, 145, 244	79.2)	3

(2015-2016)

246	Raman characterization of platinum diselenide thin films. 2D Materials, 2016, 3, 021004	5.9	138
245	Current-induced changes of migration energy barriers in graphene and carbon nanotubes. <i>Nanoscale</i> , 2016 , 8, 10310-5	7.7	2
244	Substantial Band-Gap Tuning and a Strain-Controlled Semiconductor to Gapless/Band-Inverted Semimetal Transition in Rutile Lead/Stannic Dioxide. <i>ACS Applied Materials & Dioxides amp; Interfaces</i> , 2016 , 8, 25667-25673	9.5	16
243	Spin Transfer Torque: A Multiscale Picture 2016 , 91-132		4
242	Diffusion Monte Carlo Perspective on the Spin-State Energetics of [Fe(NCH)6](2.). <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 4233-41	6.4	22
241	Role of spin-orbit interaction in the ultrafast demagnetization of small iron clusters. <i>Physical Review B</i> , 2016 , 94,	3.3	14
240	Charge carrier mobility in hybrid halide perovskites. Scientific Reports, 2015, 5, 12746	4.9	219
239	Electronic Transport as a Driver for Self-Interaction-Corrected Methods. <i>Advances in Atomic, Molecular and Optical Physics</i> , 2015 , 64, 29-86	1.7	6
238	Spin-Valve Effect in NiFe/MoS2/NiFe Junctions. <i>Nano Letters</i> , 2015 , 15, 5261-7	11.5	102
237	First-principles investigation on the electronic efficiency and binding energy of the contacts formed by graphene and poly-aromatic hydrocarbon anchoring groups. <i>Journal of Chemical Physics</i> , 2015 , 142, 164701	3.9	6
236	Single atom anisotropic magnetoresistance on a topological insulator surface. <i>New Journal of Physics</i> , 2015 , 17, 033021	2.9	6
235	Vibron-assisted spin relaxation at a metal/organic interface. <i>Physical Review B</i> , 2015 , 91,	3.3	4
234	Replacement and Original Magnet Engineering Options (ROMEOs): A European Seventh Framework Project to Develop Advanced Permanent Magnets Without, or with Reduced Use of, Critical Raw Materials. <i>Jom</i> , 2015 , 67, 1306-1317	2.1	28
233	Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. <i>Nature Communications</i> , 2015 , 6, 7026	17.4	489
232	Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. <i>ACS Nano</i> , 2015 , 9, 6018-30	16.7	232
231	Single-atom based coherent quantum interference device structure. <i>Nano Letters</i> , 2015 , 15, 2881-6	11.5	7
230	Mechanism of H2O-Induced Conductance Changes in AuCl4-Functionalized CNTs. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 9568-9573	3.8	5
229	The image charge effect and vibron-assisted processes in Coulomb blockade transport: a first principles approach. <i>Nanoscale</i> , 2015 , 7, 19231-40	7.7	7

228	Controlling the Spin Texture of Topological Insulators by Rational Design of Organic Molecules. <i>Nano Letters</i> , 2015 , 15, 6022-9	11.5	30
227	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. <i>Nature Communications</i> , 2015 , 6, 8563	17.4	764
226	A First Principle Study of the Massive TMR in Magnetic Tunnel Junction Using Fe3Al Heusler Alloy Electrodes and MgO Barrier. <i>Advanced Materials Research</i> , 2015 , 1101, 192-197	0.5	1
225	Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films. NPG Asia Materials, 2015, 7, e221-e2	21 0.3	60
224	Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface. <i>Journal of Chemical Physics</i> , 2015 , 143, 234709	3.9	4
223	Electronic Properties and Chemical Reactivity of TiS2 Nanoflakes. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 15707-15715	3.8	37
222	Ultrafast Non-local Spin Dynamics in Metallic Bi-Layers by Linear and Non-linear Magneto-Optics. <i>Springer Proceedings in Physics</i> , 2015 , 34-36	0.2	2
221	Multiprobe quantum spin Hall bars. European Physical Journal B, 2014 , 87, 1	1.2	5
220	Electronic and magnetic properties of the interface between metal-quinoline molecules and cobalt. <i>Physical Review B</i> , 2014 , 89,	3.3	33
219	Spin transport properties of triarylamine-based nanowires. <i>Chemical Communications</i> , 2014 , 50, 6626-9	5.8	15
218	Molecular dynamics investigation of carbon nanotube junctions in non-aqueous solutions. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16498-16506	13	1
217	Stretching of BDT-gold molecular junctions: thiol or thiolate termination?. <i>Nanoscale</i> , 2014 , 6, 14495-50	7.7	35
216	Proximity-induced topological state in graphene. <i>Physical Review B</i> , 2014 , 90,	3.3	17
215	Charge Transport Properties of Durene Crystals from First-Principles. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 4624-32	6.4	16
214	Efficient spin injection and giant magnetoresistance in Fe/MoS2/Fe junctions. <i>Physical Review B</i> , 2014 , 90,	3.3	67
213	Electronic structure of metal quinoline molecules from G0W0 calculations. <i>Physical Review B</i> , 2014 , 89,	3.3	11
212	Origin of the p-Type Character of AuCl3 Functionalized Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 3319-3323	3.8	16
211	Unusual stacking variations in liquid-phase exfoliated transition metal dichalcogenides. <i>ACS Nano</i> , 2014 , 8, 3690-9	16.7	36

(2013-2014)

210	Microscopic origin of the 1.3 G(0) conductance observed in oxygen-doped silver quantum point contacts. <i>Journal of Chemical Physics</i> , 2014 , 141, 194702	3.9	1
209	First principles study of the structural, electronic, and transport properties of triarylamine-based nanowires. <i>Journal of Chemical Physics</i> , 2014 , 140, 074301	3.9	11
208	Transition voltages of vacuum-spaced and molecular junctions with Ag and Pt electrodes. <i>Journal of Chemical Physics</i> , 2014 , 141, 014707	3.9	6
207	Topological tuning in three-dimensional dirac semimetals. <i>Physical Review Letters</i> , 2014 , 113, 256403	7.4	45
206	Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes. <i>Journal of Chemical Physics</i> , 2014 , 141, 174702	3.9	5
205	Ab initio transport across bismuth selenide surface barriers. <i>Physical Review B</i> , 2014 , 90,	3.3	12
204	Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 275301	1.8	1
203	Many-body quasiparticle spectrum of Co-doped ZnO: A GW perspective. <i>Physical Review B</i> , 2013 , 87,	3.3	19
202	Spin-polarized transport through single-molecule magnet Mn6 complexes. <i>Nanoscale</i> , 2013 , 5, 4751-7	7.7	16
201	Structural and tunneling properties of Si nanowires. <i>Physical Review B</i> , 2013 , 88,	3.3	4
201	Structural and tunneling properties of Si nanowires. <i>Physical Review B</i> , 2013 , 88, Spin-filtering efficiency of ferrimagnetic spinels CoFe2O4 and NiFe2O4. <i>Physical Review B</i> , 2013 , 87,	3.3	59
200	Spin-filtering efficiency of ferrimagnetic spinels CoFe2O4 and NiFe2O4. <i>Physical Review B</i> , 2013 , 87, Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions.	3.3	59
200	Spin-filtering efficiency of ferrimagnetic spinels CoFe2O4 and NiFe2O4. <i>Physical Review B</i> , 2013 , 87, Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 887-91	3.3	59
200 199 198	Spin-filtering efficiency of ferrimagnetic spinels CoFe2O4 and NiFe2O4. <i>Physical Review B</i> , 2013 , 87, Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 887-91 Possible doping strategies for MoS2 monolayers: An ab initio study. <i>Physical Review B</i> , 2013 , 88, Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces.	3.3 6.4 3.3	59 28 416
200 199 198	Spin-filtering efficiency of ferrimagnetic spinels CoFe2O4 and NiFe2O4. <i>Physical Review B</i> , 2013 , 87, Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 887-91 Possible doping strategies for MoS2 monolayers: An ab initio study. <i>Physical Review B</i> , 2013 , 88, Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces. <i>Physical Review B</i> , 2013 , 88,	3·3 6·4 3·3 3·3	59 28 416 46
200 199 198 197	Spin-filtering efficiency of ferrimagnetic spinels CoFe2O4 and NiFe2O4. <i>Physical Review B</i> , 2013 , 87, Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 887-91 Possible doping strategies for MoS2 monolayers: An ab initio study. <i>Physical Review B</i> , 2013 , 88, Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces. <i>Physical Review B</i> , 2013 , 88, The high-throughput highway to computational materials design. <i>Nature Materials</i> , 2013 , 12, 191-201 Time-dependent electron transport through a strongly correlated quantum dot: multiple-probe	3.3 6.4 3.3 3.3	59 28 416 46 1165

192	Atomistic simulations of highly conductive molecular transport junctions under realistic conditions. <i>Nanoscale</i> , 2013 , 5, 3654-9	7.7	30
191	Ground state of a spin-crossover molecule calculated by diffusion Monte Carlo. <i>Physical Review B</i> , 2013 , 87,	3.3	16
190	Spin-pumping and inelastic electron tunneling spectroscopy in topological insulators. <i>Physical Review B</i> , 2013 , 87,	3.3	6
189	Origin of the transition voltage in gold-vacuum-gold atomic junctions. <i>Nanotechnology</i> , 2013 , 24, 02520	33.4	18
188	Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges. Journal of Chemical Physics, 2013 , 138, 014704	3.9	2
187	Quantitative interpretation of the transition voltages in gold-poly(phenylene) thiol-gold molecular junctions. <i>Journal of Chemical Physics</i> , 2013 , 139, 194703	3.9	6
186	Hydrogen bonding as the origin of the switching behavior in dithiolated phenylene-vinylene oligomers. <i>Physical Review B</i> , 2013 , 88,	3.3	4
185	Site-specific order and magnetism in tetragonal Mn3Ga thin films. <i>Physical Review B</i> , 2013 , 87,	3.3	71
184	Ab initio theory for current-induced molecular switching: Melamine on Cu(001). <i>Physical Review B</i> , 2013 , 87,	3.3	24
183	Dynamical exchange interaction from time-dependent spin density functional theory. <i>Physical Review B</i> , 2013 , 88,	3.3	7
182	Spin-dependent electronic structure of the Co/Al(OP)3interface. New Journal of Physics, 2013, 15, 1130	5<u>4</u>9	19
181	Spin Inelastic Electron Spectroscopy for Single Magnetic Atoms 2013 , 471-492		
180	Gate controlled spin pumping at a quantum spin Hall edge. Applied Physics Letters, 2013, 103, 142407	3.4	3
179	Topological surface states scattering in antimony. <i>Physical Review B</i> , 2012 , 86,	3.3	19
178	Molecular Kondo chain. <i>Nano Letters</i> , 2012 , 12, 3174-9	11.5	83
177	Electronic transport through EuO spin-filter tunnel junctions. <i>Physical Review B</i> , 2012 , 86,	3.3	18
176	Efficient conducting channels formed by the Estacking in single [2,2]paracyclophane molecules. Journal of Chemical Physics, 2012 , 136, 104701	3.9	21
175	Protocol for classical molecular dynamics simulations of nano-junctions in solution. <i>Journal of Applied Physics</i> , 2012 , 112, 083714	2.5	

157

groups. Physical Review B, 2012, 86,

First Principles Study of Electron Tunneling through Ice. Journal of Physical Chemistry C, 2012, 116, 22129-821383 174 Andreev reflection in two-dimensional topological insulators with either conserved or broken 13 173 3.3 time-reversal symmetry. Physical Review B, 2012, 86, AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio 583 172 3.2 calculations. Computational Materials Science, 2012, 58, 227-235 Persistent current and Drude weight for the one-dimensional Hubbard model from current lattice 1.8 171 density functional theory. Journal of Physics Condensed Matter, 2012, 24, 055602 Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets 170 16.7 535 varies only weakly between compounds. ACS Nano, 2012, 6, 3468-80 First principle investigation of transport properties of Lindqvist derivatives based molecular 169 2.8 junction. Journal of Molecular Graphics and Modelling, 2012, 38, 220-5 Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, 168 interfacial charge transfer, and enhanced visible light response. Journal of the American Chemical 16.4 490 Society, 2012, 134, 4393-7 Assessment of density functional theory for iron(II) molecules across the spin-crossover transition. 167 3.9 79 Journal of Chemical Physics, 2012, 137, 124303 Giant resistance change across the phase transition in spin-crossover molecules. Physical Review 166 7.4 92 Letters, 2012, 108, 217201 First-principles prediction of metal-free magnetism and intrinsic half-metallicity in graphitic carbon 165 7.4 234 nitride. Physical Review Letters, 2012, 108, 197207 First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes. 164 29 3.3 Physical Review B, 2012, 85, Spectroscopic characterization of a single dangling bond on a bare Si(100)-c(42) surface for n- and 163 3.3 p-type doping. Physical Review B, 2012, 86, Ge-based spin-photodiodes for room-temperature integrated detection of photon helicity. 162 36 24 Advanced Materials, 2012, 24, 3037-41 Electric field effects on armchair MoS2 nanoribbons. ACS Nano, 2012, 6, 4823-34 161 156 Contact geometry and electronic transport properties of AgBenzeneAg molecular junctions. 160 2.3 5 Chemical Physics, 2012, 397, 82-86 Effects of the covalent linker groups on the spin transport properties of single nickelocene 159 4 molecules attached to single-walled carbon nanotubes. Journal of Chemical Physics, **2012**, 136, 194707 $^{3.9}$ Nucleobase adsorbed at graphene devices: Enhance bio-sensorics. Applied Physics Letters, 2012, 158 3.4 40 100,063101 Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring

3.3

156	Bias asymmetry in the conductance profile of magnetic ions on surfaces probed by scanning tunneling microscopy. <i>Physical Review B</i> , 2012 , 86,	3.3	6
155	Quantum transport of Au-S-S-Au nanoscale junctions. <i>Applied Physics Letters</i> , 2012 , 100, 013113	3.4	14
154	Magnetism and antiferroelectricity in MgB6. <i>Physical Review Letters</i> , 2012 , 108, 107205	7.4	16
153	Coexistance of giant tunneling electroresistance and magnetoresistance in an all-oxide composite magnetic tunnel junction. <i>Physical Review Letters</i> , 2012 , 109, 226803	7.4	26
152	Magnetic and electronic properties of D022-Mn3Ge (001) films. <i>Applied Physics Letters</i> , 2012 , 101, 1324	19.4	78
151	Tailoring magnetoresistance at the atomic level: An ab initio study. <i>Physical Review B</i> , 2012 , 85,	3.3	2
150	Bias-dependent oscillatory electron transport of monatomic sulfur chains. <i>Applied Physics Letters</i> , 2012 , 100, 103110	3.4	14
149	Persistent current and Drude weight for the one-dimensional Hubbard model from current lattice density functional theory. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 099601	1.8	3
148	Exceptionally strong magnetism in the 4d perovskites RTcO3 (R=Ca, Sr, Ba). <i>Physical Review B</i> , 2011 , 83,	3.3	39
147	Electric field control of valence tautomeric interconversion in cobalt dioxolene. <i>Physical Review Letters</i> , 2011 , 107, 047201	7.4	65
146	Organic spintronics: filtering spins with molecules. <i>Nature Materials</i> , 2011 , 10, 484-5	27	51
145	Exchange interactions and magnetic phases of transition metal oxides: Benchmarking advanced ab initio methods. <i>Physical Review B</i> , 2011 , 84,	3.3	53
144	Prediction of large bias-dependent magnetoresistance in all-oxide magnetic tunnel junctions with a ferroelectric barrier. <i>Physical Review B</i> , 2011 , 83,	3.3	24
143	Molecular spintronics. <i>Chemical Society Reviews</i> , 2011 , 40, 3336-55	58.5	897
142	From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 425301	1.8	18
141	From fused aromatics to graphene-like nanoribbons: The effects of multiple terminal groups, length and symmetric pathways on charge transport. <i>Physical Review B</i> , 2011 , 84,	3.3	5
140	Ab initio calculations of structural evolution and conductance of benzene-1,4-dithiol on gold leads. <i>ACS Nano</i> , 2011 , 5, 795-804	16.7	83
139	Effects of edge chemistry doping on graphene nanoribbon mobility. Surface Science, 2011 , 605, 1643-16	5488	24

(2010-2011)

138	The search for a spin crossover transition in small sized Econjugated molecules: a Monte Carlo study. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 316001	1.8	2	
137	Scattered surface charge density: A tool for surface characterization. <i>Physical Review B</i> , 2011 , 84,	3.3	7	
136	Perturbative approach to the Kondo effect in magnetic atoms on nonmagnetic substrates. <i>Physical Review B</i> , 2011 , 84,	3.3	20	
135	Spin scattering and spin-polarized hybrid interface states at a metal-organic interface. <i>Physical Review B</i> , 2011 , 84,	3.3	44	
134	Current-induced energy barrier suppression for electromigration from first principles. <i>Physical Review B</i> , 2011 , 84,	3.3	22	
133	Variational pseudo-self-interaction-corrected density functional approach to the ab initio description of correlated solids and molecules. <i>Physical Review B</i> , 2011 , 84,	3.3	71	
132	Comparison between s- and d-electron mediated transport in a photoswitching dithienylethene molecule using ab initio transport methods. <i>Physical Review B</i> , 2011 , 84,	3.3	3	
131	Electrical control of spin dynamics in finite one-dimensional systems. <i>Physical Review B</i> , 2011 , 84,	3.3	3	
130	Spin transport in higher n-acene molecules. <i>Physical Review B</i> , 2011 , 84,	3.3	24	
129	Spin-flip inelastic electron tunneling spectroscopy in atomic chains. <i>Physical Review B</i> , 2011 , 84,	3.3	21	
128	Spin transport properties of single metallocene molecules attached to single-walled carbon nanotubes via nickel adatoms. <i>Journal of Chemical Physics</i> , 2011 , 134, 244704	3.9	14	
127	Chapter 7:Electron Transport Theory for Large Systems. <i>RSC Theoretical and Computational Chemistry Series</i> , 2011 , 179-224	1.2	2	
126	Magnetic interaction of Co ions near the (10bar{1}0) ZnO surface. New Journal of Physics, 2010, 12, 083	3061)	4	
125	Controlled sequential dehydrogenation of single molecules by scanning tunneling microscopy. <i>Physical Review B</i> , 2010 , 82,	3.3	15	
124	Conductance of a phenylene-vinylene molecular wire: Contact gap and tilt angle dependence. <i>Physical Review B</i> , 2010 , 81,	3.3	9	
123	Quantum conductance of a single magnetic atom: An ab initio study. <i>Physical Review B</i> , 2010 , 82,	3.3	19	
122	Low-bias conductance of single benzene molecules contacted by direct Au-C and Pt-C bonds. <i>Nanotechnology</i> , 2010 , 21, 495202	3.4	21	
121	Spin filter effect of manganese phthalocyanine contacted with single-walled carbon nanotube electrodes. <i>Journal of Chemical Physics</i> , 2010 , 132, 054703	3.9	44	

120	Electronic transport calculations for the conductance of Pt-1,4-phenylene diisocyanide-Pt molecular junctions. <i>Nanotechnology</i> , 2010 , 21, 155203	3.4	8
119	Magnetism of wurtzite CoO nanoclusters. <i>Physical Review B</i> , 2010 , 81,	3.3	15
118	Polaronic distortion and vacancy-induced magnetism in MgO. <i>Physical Review B</i> , 2010 , 81,	3.3	67
117	Half-Metallic Sandwich Molecular Wires with Negative Differential Resistance and Sign-Reversible High Spin-Filter Efficiency. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21893-21899	3.8	28
116	Tuning the magneto-transport properties of nickel-cyclopentadienyl multidecker clusters by molecule-electrode coupling manipulation. <i>ACS Nano</i> , 2010 , 4, 2274-82	16.7	31
115	Investigation of the conducting properties of a photoswitching dithienylethene molecule. <i>ACS Nano</i> , 2010 , 4, 2635-42	16.7	39
114	Electronic transport across S9 sulfur clusters. <i>Physical Review B</i> , 2010 , 82,	3.3	10
113	Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 13840-7	16.4	188
112	Electric field response of strongly correlated one-dimensional metals: A Bethe ansatz density functional theory study. <i>Physical Review B</i> , 2010 , 82,	3.3	18
111	Spin transport properties of 3d transition metal(II) phthalocyanines in contact with single-walled carbon nanotube electrodes. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 10805-11	3.6	59
110	Computational modeling of a carbon nanotube-based DNA nanosensor. <i>Nanotechnology</i> , 2010 , 21, 445.	59.14	12
109	AnomalousIIV curve for mono-atomic carbon chains. New Journal of Physics, 2010, 12, 103017	2.9	15
108	Ab initio study of electron transport in dry poly(G)-poly(C) A-DNA strands. <i>Physical Review B</i> , 2010 , 82,	3.3	28
107	Finite-bias electronic transport of molecules in a water solution. <i>Physical Review B</i> , 2010 , 81,	3.3	40
106	Selection of single-walled carbon nanotubes according to both their diameter and chirality via nanotweezers. <i>Nano Research</i> , 2010 , 3, 296-306	10	12
105	Oxygen defect origin of ferromagnetism in ZnCoO. <i>Journal of Magnetism and Magnetic Materials</i> , 2010 , 322, 1209-1211	2.8	10
104	Electron transport across electrically switchable magnetic molecules. <i>Physical Review B</i> , 2009 , 80,	3.3	7
103	Resonant electronic states and IIV curves of Fe/MgO/Fe(100) tunnel junctions. <i>Physical Review B</i> , 2009 , 79,	3.3	53

(2009-2009)

102	Switching a single spin on metal surfaces by a STM Tip: Ab Initio studies. <i>Physical Review Letters</i> , 2009 , 103, 057202	7.4	52
101	Effects of structural relaxation on calculations of the interface and transport properties of Fe/MgO(001) tunnel junctions. <i>Physical Review B</i> , 2009 , 79,	3.3	22
100	Simulating STM transport in alkanes from first principles. <i>Physical Review B</i> , 2009 , 79,	3.3	23
99	MgN: A possible material for spintronic applications. <i>Physical Review B</i> , 2009 , 80,	3.3	28
98	Nonequilibrium Green function study of Pd4-cluster-functionalized carbon nanotubes as hydrogen sensors. <i>Physical Review B</i> , 2009 , 79,	3.3	17
97	Effects of spin-orbit coupling on the conductance of molecules contacted with gold electrodes. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 335301	1.8	6
96	The spin filter effect of iron-cyclopentadienyl multidecker clusters: the role of the electrode band structure and the coupling strength. <i>Nanotechnology</i> , 2009 , 20, 385401	3.4	32
95	Electronic transport calculations for rough interfaces in Al, Cu, Ag, and Au. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 315001	1.8	5
94	Magnetism in carbon nanoscrolls: Quasi-half-metals and half-metals in pristine hydrocarbons. <i>Nano Research</i> , 2009 , 2, 844-850	10	10
93	A spin of their own. <i>Nature Materials</i> , 2009 , 8, 693-5	27	123
93 92	A spin of their own. <i>Nature Materials</i> , 2009 , 8, 693-5 Electrostatic spin crossover effect in polar magnetic molecules. <i>Nature Materials</i> , 2009 , 8, 813-7	27	123
		•	
92	Electrostatic spin crossover effect in polar magnetic molecules. <i>Nature Materials</i> , 2009 , 8, 813-7 Exploring the limits of the self-consistent Born approximation for inelastic electronic transport.	27	134
92 91	Electrostatic spin crossover effect in polar magnetic molecules. <i>Nature Materials</i> , 2009 , 8, 813-7 Exploring the limits of the self-consistent Born approximation for inelastic electronic transport. <i>Physical Review B</i> , 2009 , 79, Electronic transport properties of 1,1'-ferrocene dicarboxylic acid linked to Al(111) electrodes. <i>ACS</i>	27 3·3	134
92 91 90	Electrostatic spin crossover effect in polar magnetic molecules. <i>Nature Materials</i> , 2009 , 8, 813-7 Exploring the limits of the self-consistent Born approximation for inelastic electronic transport. <i>Physical Review B</i> , 2009 , 79, Electronic transport properties of 1,1'-ferrocene dicarboxylic acid linked to Al(111) electrodes. <i>ACS Nano</i> , 2009 , 3, 4137-43 Electron doping and magnetic moment formation in N- and C-doped MgO. <i>Applied Physics Letters</i> ,	27 3·3 16.7	134 26 31
92 91 90 89	Electrostatic spin crossover effect in polar magnetic molecules. <i>Nature Materials</i> , 2009 , 8, 813-7 Exploring the limits of the self-consistent Born approximation for inelastic electronic transport. <i>Physical Review B</i> , 2009 , 79, Electronic transport properties of 1,1'-ferrocene dicarboxylic acid linked to Al(111) electrodes. <i>ACS Nano</i> , 2009 , 3, 4137-43 Electron doping and magnetic moment formation in N- and C-doped MgO. <i>Applied Physics Letters</i> , 2009 , 94, 252505 Comment on "theoretical description of carrier mediated magnetism in cobalt doped ZnO". <i>Physical</i>	27 3·3 16.7	134 26 31 70
92 91 90 89 88	Electrostatic spin crossover effect in polar magnetic molecules. <i>Nature Materials</i> , 2009 , 8, 813-7 Exploring the limits of the self-consistent Born approximation for inelastic electronic transport. <i>Physical Review B</i> , 2009 , 79, Electronic transport properties of 1,1'-ferrocene dicarboxylic acid linked to Al(111) electrodes. <i>ACS Nano</i> , 2009 , 3, 4137-43 Electron doping and magnetic moment formation in N- and C-doped MgO. <i>Applied Physics Letters</i> , 2009 , 94, 252505 Comment on "theoretical description of carrier mediated magnetism in cobalt doped ZnO". <i>Physical Review Letters</i> , 2009 , 102, 159701; discussion 159702 Interface and transport properties of Fe/V/MgO/Fe and Fe/V/Fe/MgO/Fe magnetic tunneling	27 3·3 16.7 3·4 7·4	134 26 31 70

84	Magnetism of CoO polymorphs: Density functional theory and Monte Carlo simulations. <i>Physical Review B</i> , 2008 , 78,	3.3	33
83	Impurity-ion pair induced high-temperature ferromagnetism in Co-doped ZnO. <i>Physical Review B</i> , 2008 , 78,	3.3	144
82	Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. <i>Physical Review B</i> , 2008 , 78,	3.3	251
81	IN curves of Fe/MgO (001) single- and double-barrier tunnel junctions. <i>Physical Review B</i> , 2008 , 78,	3.3	19
80	Novel one-dimensional organometallic half metals: vanadium-cyclopentadienyl, vanadium-cyclopentadienyl-benzene, and vanadium-anthracene wires. <i>Nano Letters</i> , 2008 , 8, 3640-4	11.5	116
79	The difference of the transport properties of graphene with corrugation structure and with flat structure. <i>Applied Physics Letters</i> , 2008 , 92, 163104	3.4	11
78	Polarizability of molecular chains: A self-interaction correction approach. <i>Physical Review B</i> , 2008 , 77,	3.3	53
77	Electronic properties of bulk and thin film SrRuO3: Search for the metal-insulator transition. <i>Physical Review B</i> , 2008 , 78,	3.3	124
76	Functionalized Nanopore-Embedded Electrodes for Rapid DNA Sequencing. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 3456-3459	3.8	65
75	Conceptual molecular quantum phase transistor based on first-principles quantum transport calculations. <i>Physical Review B</i> , 2008 , 78,	3.3	24
74	Energy alignment induced negative differential resistance: the role of hybrid states in aromatic molecular devices. <i>Journal of Chemical Physics</i> , 2008 , 129, 074710	3.9	15
73	Efficient ab initio method for inelastic transport in nanoscale devices: Analysis of inelastic electron tunneling spectroscopy. <i>Physical Review B</i> , 2008 , 78,	3.3	39
72	Predicting d0 magnetism: Self-interaction correction scheme. <i>Physical Review B</i> , 2008 , 78,	3.3	113
71	Newtonian origin of the spin motive force in ferromagnetic atomic wires. <i>Physical Review B</i> , 2008 , 77,	3.3	22
70	Effects of self-interaction corrections on the transport properties of phenyl-based molecular junctions. <i>Physical Review B</i> , 2008 , 77,	3.3	114
69	High transmission in rutheniumBenzeneButhenium molecular junctions. <i>Chemical Physics</i> , 2008 , 354, 106-111	2.3	17
68	Efficient atomic self-interaction correction scheme for nonequilibrium quantum transport. <i>Physical Review Letters</i> , 2007 , 99, 056801	7.4	120
67	An efficient nonequilibrium Green's function formalism combined with density functional theory approach for calculating electron transport properties of molecular devices with quasi-one-dimensional electrodes. <i>Journal of Chemical Physics</i> , 2007 , 127, 194710	3.9	47

66	Injecting and controlling spins in organic materials. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4455		75
65	Observation of van der Waals Driven Self-Assembly of MoSI Nanowires into a Low-Symmetry Structure Using Aberration-Corrected Electron Microscopy. <i>Advanced Materials</i> , 2007 , 19, 543-547	24	41
64	Organic electronics: memoirs of a spin. <i>Nature Nanotechnology</i> , 2007 , 2, 204-6	28.7	33
63	Investigation of n-type donor defects in Co-doped ZnO. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 316, e185-e187	2.8	8
62	Magnetic properties of ZrO2-diluted magnetic semiconductors. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 316, e188-e190	2.8	24
61	Electronic transport through Fe/MgO/Fe(1 0 0) tunnel junctions. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 316, 481-483	2.8	13
60	Structure-related effects on the domain wall migration in atomic point contacts. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 316, e934-e936	2.8	
59	Monte Carlo simulations of donor band exchange in (Zn,Co)O. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 316, 218-220	2.8	3
58	Exchange parameters from approximate self-interaction correction scheme. <i>Journal of Chemical Physics</i> , 2007 , 127, 034112	3.9	9
57	Effect of the continuity of the pi conjugation on the conductance of ruthenium-octene-ruthenium molecular junctions. <i>Journal of Chemical Physics</i> , 2007 , 126, 174706	3.9	9
56	First-principles calculation on the zero-bias conductance of a gold/1,4-diaminobenzene/gold molecular junction. <i>Nanotechnology</i> , 2007 , 18, 345203	3.4	25
55	Resonant magnetoresistance in organic spin valves (invited). <i>Journal of Applied Physics</i> , 2007 , 101, 09B	1 0:2 5	17
54	Atomic-orbital-based approximate self-interaction correction scheme for molecules and solids. <i>Physical Review B</i> , 2007 , 75,	3.3	139
53	Search for magnetoresistance in excess of 1000% in Ni point contacts: Density functional calculations. <i>Physical Review B</i> , 2007 , 76,	3.3	22
52	On-site approximation for spinBrbit coupling in linear combination of atomic orbitals density functional methods. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 489001	1.8	4
51	Giant magnetoresistance of nickel-contacted carbon nanotubes. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 042201	1.8	6
50	First Principles Study of the Phase Transitions of MnAs. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 941, 1		
49	On-site approximation for spinBrbit coupling in linear combination of atomic orbitals density functional methods. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 7999-8013	1.8	80

48	Magnetization of electrodeposited nickel: Role of interstitial carbon. <i>Journal of Applied Physics</i> , 2006 , 99, 08J301	2.5	6
47	Inelastic transport in molecular spin valves: Calculations using the tight-binding Su-Schrieffer-Heeger model. <i>Physical Review B</i> , 2006 , 73,	3.3	10
46	Magnetomechanical interplay in spin-polarized point contacts. <i>Physical Review B</i> , 2006 , 73,	3.3	2
45	Bias Dependent TMR in Fe/MgO/Fe(100) Tunnel Junctions. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 941, 1		
44	Ab initio study of the magnetostructural properties of MnAs. <i>Physical Review B</i> , 2006 , 74,	3.3	39
43	Spin and molecular electronics in atomically generated orbital landscapes. <i>Physical Review B</i> , 2006 , 73,	3.3	551
42	Molecular conduction: do time-dependent simulations tell you more than the Landauer approach?. <i>Journal of Chemical Physics</i> , 2006 , 124, 214708	3.9	67
41	Molecular-Spintronics: The Art of Driving Spin Through Molecules. <i>Journal of Computational and Theoretical Nanoscience</i> , 2006 , 3, 624-642	0.3	123
40	Molecular-Spintronics: The Art of Driving Spin Through Molecules. <i>Journal of Computational and Theoretical Nanoscience</i> , 2006 , 3, 624-642	0.3	89
39	Ferromagnetism driven by intrinsic point defects in HfO(2). <i>Physical Review Letters</i> , 2005 , 94, 217205	7.4	383
38	Lattice distortion effects on the magnetostructural phase transition of MnAs. <i>Physical Review Letters</i> , 2005 , 95, 077203	7.4	22
37	Self-interaction errors in density-functional calculations of electronic transport. <i>Physical Review Letters</i> , 2005 , 95, 146402	7.4	277
36	Strong correlation and ferromagnetism in (Ga,Mn)As and (Ga,Mn)N. <i>Journal of Magnetism and Magnetic Materials</i> , 2005 , 290-291, 1391-1394	2.8	11
35	Self-interaction effects in (Ga,Mn)As and (Ga,Mn)N. Chemical Physics, 2005, 309, 59-65	2.3	36
34	Towards molecular spintronics. <i>Nature Materials</i> , 2005 , 4, 335-9	27	1096
33	Magnetic proximity effect in carbon nanotubes. <i>Journal of Magnetism and Magnetic Materials</i> , 2005 , 290-291, 286-289	2.8	4
32	Current-driven magnetic rearrangements in spin-polarized point contacts. <i>Physical Review B</i> , 2005 , 72,	3.3	19
31	Single-channel conductance of H2 molecules attached to platinum or palladium electrodes. <i>Physical Review B</i> , 2005 , 72,	3.3	41

(2001-2005)

30	Conductance oscillations in zigzag platinum chains. <i>Physical Review Letters</i> , 2005 , 95, 256804	7.4	50
29	Asymmetric IIV characteristics and magnetoresistance in magnetic point contacts. <i>Physical Review B</i> , 2004 , 70,	3.3	45
28	Contact-induced spin polarization in carbon nanotubes. <i>Physical Review B</i> , 2004 , 69,	3.3	24
27	The magnetism of carbon. <i>Physics World</i> , 2004 , 17, 33-37	0.5	14
26	Magnetic semiconductors and half-metals. Journal Physics D: Applied Physics, 2004, 37, 988-993	3	123
25	IV asymmetry and magnetoresistance in nickel nanoconstrictions. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, 1571-1572	2.8	9
24	(Ga,Mn)As/AlAs digital ferromagnetic heterostructures. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, E1583-E1584	2.8	
23	Contact induced magnetism in carbon nanotubes. <i>Journal of Physics Condensed Matter</i> , 2004 , 16, L155-L	.1:631	80
22	Different origins of the ferromagnetic order in (Ga,Mn)As and (Ga,Mn)N. <i>Physical Review B</i> , 2004 , 70,	3.3	111
21	Ferromagnetism and metallic state in digital (Ga,Mn)As heterostructures. <i>Physical Review B</i> , 2003 , 68,	3.3	20
20	Quantum Transport in Inhomogeneous Multi-Wall Nanotubes 2002 , 333-347		
19	Prediction of enhanced ferromagnetism in (Ga,Mn)As by intrinsic defect manipulation. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 238, 252-257	2.8	5
18	First principles study of intrinsic defects in (Ga,Mn)As. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 242-245, 441-446	2.8	9
17	Density Functional Calculations for IIII Diluted Ferromagnetic Semiconductors: A Review. <i>Journal of Superconductivity and Novel Magnetism</i> , 2002 , 15, 85-104		78
16	Influence of Quantum Confinement on the Electronic and Magnetic Properties of (Ga,Mn)As Diluted Magnetic Semiconductor. <i>Nano Letters</i> , 2002 , 2, 605-608	11.5	89
15	Spin-Polarized Transport in F/S Nanojunctions. <i>Journal of Low Temperature Physics</i> , 2001 , 124, 305-320	1.3	8
14	Ab initio transport theory for digital ferromagnetic heterostructures. <i>Physical Review Letters</i> , 2001 , 87, 267202	7.4	42
13	Influence of the local As antisite distribution on ferromagnetism in (Ga, Mn)As. <i>Applied Physics Letters</i> , 2001 , 78, 3493-3495	3.4	65

12	First-principles study of the origin and nature of ferromagnetism in Ga1\(\mathbb{M}\)MnxAs. <i>Physical Review B</i> , 2001 , 63,	3.3	258
11	Anomalous magnetoresistance of magnetic multilayers. <i>Journal of Physics Condensed Matter</i> , 2000 , 12, L621-L626	1.8	
10	Breakdown of the resistor model of CPP-GMR in magnetic multilayered nanostructures. <i>Physical Review B</i> , 2000 , 61, 14225-14228	3.3	12
9	Enhancement of giant magnetoresistance due to spin mixing in magnetic multilayers with a superconducting contact. <i>Physical Review B</i> , 2000 , 63,	3.3	6
8	Fractional quantum conductance in carbon nanotubes. <i>Physical Review Letters</i> , 2000 , 84, 1974-7	7.4	150
7	Ground state of half-metallic zinc-blende MnAs. <i>Physical Review B</i> , 2000 , 62, 15553-15560	3.3	211
6	Suppression of Giant Magnetoresistance by a Superconducting Contact. <i>Physical Review Letters</i> , 1999 , 82, 4938-4941	7.4	20
5	Crossover between the ballistic and diffusive regime of the spin-conductance and giant magnetoresistance in magnetic multilayered nanostructures. <i>Physical Review B</i> , 1999 , 60, 7385-7394	3.3	12
4	GMR in 3d, 4d and 5d transition metals multilayers. <i>Journal of Magnetism and Magnetic Materials</i> , 1999 , 196-197, 101-103	2.8	3
3	General Green formalism for transport calculations with spd Hamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayers. <i>Physical Review B</i> , 1999 , 59, 11936-11948	3.3	255
2	A further look at waveguide lasers. IEEE Journal of Quantum Electronics, 1998, 34, 2403-2408	2	0
1	Conductance oscillations in transition metal superlattices. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, L691-L697	1.8	4