Milton H Saier Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/253395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Major Facilitator Superfamily. Microbiology and Molecular Biology Reviews, 1998, 62, 1-34.	2.9	1,760
2	A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends in Biochemical Sciences, 1993, 18, 13-20.	3.7	909
3	TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Research, 2006, 34, D181-D186.	6.5	774
4	A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters. Microbiology and Molecular Biology Reviews, 2000, 64, 354-411.	2.9	773
5	The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Research, 2016, 44, D372-D379.	6.5	711
6	The Transporter Classification Database. Nucleic Acids Research, 2014, 42, D251-D258.	6.5	437
7	The major facilitator superfamily (MFS) revisited. FEBS Journal, 2012, 279, 2022-2035.	2.2	402
8	The Transporter Classification Database: recent advances. Nucleic Acids Research, 2009, 37, D274-D278.	6.5	391
9	Gut <i>Bacteroides</i> species in health and disease. Gut Microbes, 2021, 13, 1-20.	4.3	383
10	Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology (United Kingdom), 2003, 149, 3051-3072.	0.7	333
11	Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities 1 1Edited by G. Von Heijne. Journal of Molecular Biology, 1998, 277, 573-592.	2.0	289
12	Phylogeny of multidrug transporters. Seminars in Cell and Developmental Biology, 2001, 12, 205-213.	2.3	288
13	The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Molecular Microbiology, 1996, 19, 1167-1175.	1.2	275
14	The drug/metabolite transporter superfamily. FEBS Journal, 2001, 268, 3620-3639.	0.2	270
15	Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes 1 1Edited by G. von Heijne. Journal of Molecular Biology, 2000, 301, 75-100.	2.0	265
16	Families of transmembrane sugar transport proteins. Molecular Microbiology, 2000, 35, 699-710.	1.2	260
17	The MIP Family of Integral Membrane Channel Proteins: Sequence Comparisons, Evolutionary Relationships, Reconstructed Pathway of Evolution, and Proposed Functional Differentiation of the Two Repeated Halves of the Proteins. Critical Reviews in Biochemistry and Molecular Biology, 1993, 28, 235-257.	2.3	255
18	The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology (United Kingdom), 2000, 146, 1797-1814.	0.7	251

#	Article	IF	CITATIONS
19	Comparative Genomic Analyses of the Bacterial Phosphotransferase System. Microbiology and Molecular Biology Reviews, 2005, 69, 608-634.	2.9	246
20	The Transporter Classification (TC) System, 2002. Critical Reviews in Biochemistry and Molecular Biology, 2002, 37, 287-337.	2.3	240
21	Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Molecular Microbiology, 2004, 39, 1366-1381.	1.2	223
22	Catabolite repression and inducer control in Gram-positive bacteria. Microbiology (United Kingdom), 1996, 142, 217-230.	0.7	222
23	The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. FEBS Journal, 2003, 270, 799-813.	0.2	218
24	Transcriptome Analysis of Crp-Dependent Catabolite Control of Gene Expression in Escherichia coli. Journal of Bacteriology, 2004, 186, 3516-3524.	1.0	218
25	A functional superfamily of sodium/solute symporters. BBA - Biomembranes, 1994, 1197, 133-166.	7.9	216
26	A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiology Letters, 1997, 156, 1-8.	0.7	215
27	Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB Journal, 1998, 12, 265-274.	0.2	210
28	Two Families of Mechanosensitive Channel Proteins. Microbiology and Molecular Biology Reviews, 2003, 67, 66-85.	2.9	208
29	Phylogenetic characterization of novel transport protein families revealed by genome analyses. BBA - Biomembranes, 1999, 1422, 1-56.	7.9	207
30	A novel protein kinase that controls carbon catabolite repression in bacteria. Molecular Microbiology, 1998, 27, 1157-1169.	1.2	205
31	Unified inventory of established and putative transporters encoded within the complete genome ofSaccharomyces cerevisiae. FEBS Letters, 1998, 430, 116-125.	1.3	203
32	The Transporter Classification Database (TCDB): 2021 update. Nucleic Acids Research, 2021, 49, D461-D467.	6.5	192
33	Novel Proteins of the Phosphotransferase System Encoded within the rpoN Operon of Escherichia coli. Journal of Biological Chemistry, 1995, 270, 4822-4839.	1.6	190
34	information presented in this review was initially prepared for presentation at the FASEB meeting on amino acid transport held in Copper Mountain, Colorado, June 26–July 1, 1999 and was updated in January 2000 following the meeting of the Transport Nomenclature Panel of the International Union of Biochemistry and Molecular Biology (IUBMB) in Geneva, November 28–30, 1999. The system of	0.7	188
35	classification described in this. Microbiology (United Kingdom), 2000, 146, 1775-1795. Evolutionary origins of multidrug and drugâ€specific efflux pumps in bacteria. FASEB Journal, 1998, 12, 265-274.	0.2	184
36	The Phosphoenolpyruvate:Sugar Phosphotransferase System in Gram-Positive Bacteria: Properties, Mechanism, and Regulation. CRC Critical Reviews in Microbiology, 1988, 15, 297-338.	4.8	183

#	Article	IF	CITATIONS
37	P-type ATPases of eukaryotes and bacteria: Sequence analyses and construction of phylogenetic trees. Journal of Molecular Evolution, 1994, 38, 57-99.	0.8	177
38	Protein-translocating outer membrane porins of Gram-negative bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1562, 6-31.	1.4	176
39	The Mitochondrial Carrier Family of Transport Proteins: Structural, Functional, and Evolutionary Relationships. Critical Reviews in Biochemistry and Molecular Biology, 1993, 28, 209-233.	2.3	168
40	Protein phosphorylation and regulation of carbon metabolism in Gram-negative versus Gram-positive bacteria. Trends in Biochemical Sciences, 1995, 20, 267-271.	3.7	164
41	Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Archives of Microbiology, 2002, 177, 441-450.	1.0	159
42	Phylogeny as a guide to structure and function of membrane transport proteins (Review). Molecular Membrane Biology, 2004, 21, 171-181.	2.0	157
43	Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology (United Kingdom), 1997, 143, 2685-2699.	0.7	152
44	A new subfamily of bacterial ABCâ€ŧype transport systems catalyzing export of drugs and carbohydrates. Protein Science, 1992, 1, 1326-1332.	3.1	151
45	The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Molecular Microbiology, 1995, 16, 1157-1169.	1.2	151
46	Export of l -Isoleucine from Corynebacterium glutamicum : a Two-Gene-Encoded Member of a New Translocator Family. Journal of Bacteriology, 2002, 184, 3947-3956.	1.0	148
47	Multidrug-Resistant Transport Proteins in Yeast: Complete Inventory and Phylogenetic Characterization of Yeast Open Reading Frames within the Major Facilitator Superfamily. , 1997, 13, 43-54.		137
48	Tracing pathways of transport protein evolution. Molecular Microbiology, 2003, 48, 1145-1156.	1.2	137
49	In Vitro Binding of the Pleiotropic Transcriptional Regulatory Protein, FruR, to the fru, pps, ace, pts and icd Operons of Escherichia coli and Salmonella typhimurium. Journal of Molecular Biology, 1993, 234, 28-44.	2.0	135
50	Gap junctional proteins of animals: The innexin/pannexin superfamily. Progress in Biophysics and Molecular Biology, 2007, 94, 5-14.	1.4	131
51	Ser/Thr/Tyr Protein Phosphorylation in Bacteria – For Long Time Neglected, Now Well Established. Journal of Molecular Microbiology and Biotechnology, 2005, 9, 125-131.	1.0	130
52	Functional Interactions between the Carbon and Iron Utilization Regulators, Crp and Fur, in Escherichia coli. Journal of Bacteriology, 2005, 187, 980-990.	1.0	129
53	Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiology Letters, 2001, 204, 223-231.	0.7	128
54	A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiology Letters, 2006, 156. 1-8.	0.7	125

#	Article	IF	CITATIONS
55	Structural and evolutionary relationships among the immunophilins: two ubiquitous families of peptidylâ€prolyl <i>cisâ€trans</i> isomerases. FASEB Journal, 1992, 6, 3410-3120.	0.2	121
56	Molecular Phylogeny as a Basis for the Classification of Transport Proteins from Bacteria, Archaea and Eukarya. Advances in Microbial Physiology, 1998, 40, 81-136.	1.0	120
57	The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1609, 115-125.	1.4	120
58	A novel family of channel-forming, autotransporting, bacterial virulence factors. Molecular Membrane Biology, 1997, 14, 113-123.	2.0	114
59	Overexpression of the Escherichia coli sugE Gene Confers Resistance to a Narrow Range of Quaternary Ammonium Compounds. Journal of Bacteriology, 2002, 184, 2543-2545.	1.0	114
60	Structure and evolution of a multidomain multiphosphoryl transfer protein. Journal of Molecular Biology, 1990, 213, 687-703.	2.0	110
61	Global landscape of cell envelope protein complexes in Escherichia coli. Nature Biotechnology, 2018, 36, 103-112.	9.4	110
62	Transport capabilities of eleven gram-positive bacteria: Comparative genomic analyses. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1342-1366.	1.4	106
63	Holins in Bacteria, Eukaryotes, and Archaea: Multifunctional Xenologues with Potential Biotechnological and Biomedical Applications. Journal of Bacteriology, 2015, 197, 7-17.	1.0	105
64	A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biology, 2008, 9, R158.	3.8	104
65	The P-Type ATPase Superfamily. Journal of Molecular Microbiology and Biotechnology, 2010, 19, 5-104.	1.0	103
66	In Silico and Transcriptional Analysis of Carbohydrate Uptake Systems of Streptomyces coelicolor A3(2). Journal of Bacteriology, 2004, 186, 1362-1373.	1.0	102
67	Comparative genomics of the pathogenic ciliate Ichthyophthirius multifiliis, its free-living relatives and a host species provide insights into adoption of a parasitic lifestyle and prospects for disease control. Genome Biology, 2011, 12, R100.	13.9	102
68	The ion transporter superfamily. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1618, 79-92.	1.4	101
69	Protein Secretion and Membrane Insertion Systems in Gram-Negative Bacteria. Journal of Membrane Biology, 2006, 214, 75-90.	1.0	99
70	Enzyme INtr from Escherichia coli. Journal of Biological Chemistry, 1999, 274, 26185-26191.	1.6	97
71	The Amino Acid-Polyamine-Organocation Superfamily. Journal of Molecular Microbiology and Biotechnology, 2012, 22, 105-113.	1.0	97
72	Novel phosphotransferase system genes revealed by genome analysis – the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology (United Kingdom), 1999, 145, 3419-3429.	0.7	96

#	Article	IF	CITATIONS
73	TRAP transporters: an ancient family of extracytoplasmic solute- receptor-dependent secondary active transporters. Microbiology (United Kingdom), 1999, 145, 3431-3445.	0.7	94
74	A Broad-Specificity Multidrug Efflux Pump Requiring a Pair of Homologous SMR-Type Proteins. Journal of Bacteriology, 2000, 182, 2311-2313.	1.0	94
75	The β-barrel finder (BBF) program, allowing identification of outer membrane β-barrel proteins encoded within prokaryotic genomes. Protein Science, 2009, 11, 2196-2207.	3.1	94
76	Protein secretion systems of Pseudomonas aeruginosa and P. fluorescens. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1611, 223-233.	1.4	92
77	Mechanism, regulation and physiological significance of the loop diuretic-sensitive NaCl/KCl symport system in animal cells. Molecular and Cellular Biochemistry, 1984, 59, 11-32.	1.4	91
78	Catabolite Repression and Activation in Bacillus subtilis : Dependency on CcpA, HPr, and HprK. Journal of Bacteriology, 2005, 187, 7826-7839.	1.0	91
79	Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. Microbiology (United Kingdom), 2001, 147, 3201-3214.	0.7	91
80	CHR, a Novel Family of Prokaryotic Proton Motive Force-Driven Transporters Probably Containing Chromate/Sulfate Antiporters. Journal of Bacteriology, 1998, 180, 5799-5802.	1.0	90
81	Phylogenetic, structural and functional analyses of the LacI-GalR family of bacterial transcription factors. FEBS Letters, 1995, 377, 98-102.	1.3	86
82	Mammalian integral membrane receptors are homologous to facilitators and antiporters of yeast, fungi, and eubacteria. Protein Science, 1993, 2, 20-30.	3.1	85
83	The tripartite tricarboxylate transporter (TTT) family. Research in Microbiology, 2003, 154, 457-465.	1.0	85
84	A proposed link between nitrogen and carbon metabolism involving protein phosphorylation in bacteria. Protein Science, 1992, 1, 722-726.	3.1	83
85	Cyclic AMP-independent catabolite repression in bacteria. FEMS Microbiology Letters, 1996, 138, 97-103.	0.7	83
86	Multiple mechanisms controlling carbon metabolism in bacteria. , 1998, 58, 170-174.		83
87	Vectorial Metabolism and the Evolution of Transport Systems. Journal of Bacteriology, 2000, 182, 5029-5035.	1.0	83
88	The principal chloroquine resistance protein of Plasmodium falciparum is a member of the drug/metabolite transporter superfamily. Microbiology (United Kingdom), 2004, 150, 1-3.	0.7	83
89	The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 1308.	1.8	83
90	Expansion of the APC superfamily of secondary carriers. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2797-2811.	1.5	82

#	Article	IF	CITATIONS
91	A functional-phylogenetic system for the classification of transport proteins. , 1999, 75, 84-94.		79
92	Functional Taxonomy of Bacterial Hyperstructures. Microbiology and Molecular Biology Reviews, 2007, 71, 230-253.	2.9	79
93	Bioinformatic Characterization of P-Type ATPases Encoded Within the Fully Sequenced Genomes of 26 Eukaryotes. Journal of Membrane Biology, 2009, 229, 115-130.	1.0	79
94	Evidence for the evolutionary relatedness of the proteins of the bacterial phosphoenolpyruvate:Sugar phosphotransferase system. Journal of Cellular Biochemistry, 1985, 27, 43-56.	1.2	78
95	Modular multidomain phosphoryl transfer proteins of bacteria. Current Opinion in Structural Biology, 1997, 7, 407-415.	2.6	75
96	Membrane Porters of ATP-Binding Cassette Transport Systems Are Polyphyletic. Journal of Membrane Biology, 2009, 231, 1-9.	1.0	75
97	Discovering lactic acid bacteria by genomics. , 2002, 82, 29-58.		74
98	The Ascorbate Transporter of Escherichia coli. Journal of Bacteriology, 2003, 185, 2243-2250.	1.0	73
99	Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology (United Kingdom), 1996, 142, 231-250.	0.7	73
100	Cryo-EM structure of OSCA1.2 from <i>Oryza sativa</i> elucidates the mechanical basis of potential membrane hyperosmolality gating. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14309-14318.	3.3	71
101	Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system. Molecular Microbiology, 1996, 21, 941-952.	1.2	70
102	The Bacterial Phosphotransferase System: New Frontiers 50 Years after Its Discovery. Journal of Molecular Microbiology and Biotechnology, 2015, 25, 73-78.	1.0	70
103	Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1511, 206-223.	1.4	68
104	Growth regulation and amino acid transport in epithelial cells: Influence of culture conditions and transformation on A, ASC, and I transport activities. Journal of Cellular Physiology, 1982, 113, 240-246.	2.0	67
105	Multiple Phosphorylation of SacY, a Bacillus subtilisTranscriptional Antiterminator Negatively Controlled by the Phosphotransferase System. Journal of Biological Chemistry, 1997, 272, 17230-17237.	1.6	66
106	Solution structure of the phosphocarrier protein HPr from <i>Bacillus subtilis</i> by twoâ€dimensional NMR spectroscopy. Protein Science, 1992, 1, 1363-1376.	3.1	65
107	The bile/arsenite/riboflavin transporter (BART) superfamily. FEBS Journal, 2007, 274, 612-629.	2.2	65
108	In Vitro Reconstitution of Transcriptional Antitermination by the SacT and SacY Proteins of Bacillus subtilis. Journal of Biological Chemistry, 1996, 271, 18966-18972.	1.6	64

#	Article	IF	CITATIONS
109	Toward a Hyperstructure Taxonomy. Annual Review of Microbiology, 2007, 61, 309-329.	2.9	63
110	Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs. PLoS ONE, 2015, 10, e0140569.	1.1	63
111	Regulation of sigL Expression by the Catabolite Control Protein CcpA Involves a Roadblock Mechanism in Bacillus subtilis : Potential Connection between Carbon and Nitrogen Metabolism. Journal of Bacteriology, 2005, 187, 6856-6861.	1.0	61
112	Topological and phylogenetic analyses of bacterial holin families and superfamilies. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2654-2671.	1.4	61
113	CcpB, a Novel Transcription Factor Implicated in Catabolite Repression in Bacillus subtilis. Journal of Bacteriology, 1998, 180, 491-497.	1.0	60
114	Regulation of bacterial physiological processes by three types of protein phosphorylating systems. Trends in Biochemical Sciences, 1990, 15, 391-395.	3.7	59
115	Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiology, 2007, 7, 53.	1.3	59
116	The IUBMB-Endorsed Transporter Classification System. Molecular Biotechnology, 2004, 27, 253-262.	1.3	58
117	Lysophospholipid Flipping across the Escherichia coli Inner Membrane Catalyzed by a Transporter (LpIT) Belonging to the Major Facilitator Superfamily. Journal of Biological Chemistry, 2005, 280, 12028-12034.	1.6	58
118	Genome archeology leading to the characterization and classification of transport proteins. Current Opinion in Microbiology, 1999, 2, 555-561.	2.3	56
119	A transporter of Escherichia coli specific for l- and d-methionine is the prototype for a new family within the ABC superfamily. Archives of Microbiology, 2003, 180, 88-100.	1.0	55
120	Carbonic Anhydrases Fused to Anion Transporters of the SulP Family: Evidence for a Novel Type of Bicarbonate Transporter. Journal of Molecular Microbiology and Biotechnology, 2004, 8, 169-176.	1.0	55
121	BioV Suite – a collection of programs for the study of transport protein evolution. FEBS Journal, 2012, 279, 2036-2046.	2.2	55
122	Regulatory interactions involving the proteins of the phosphotransferase system in enteric bacteria. Journal of Cellular Biochemistry, 1993, 51, 62-68.	1.2	53
123	Characterization of Glucose-Specific Catabolite Repression-Resistant Mutants of Bacillus subtilis : Identification of a Novel Hexose:H + Symporter. Journal of Bacteriology, 1998, 180, 498-504.	1.0	53
124	The amoebapore superfamily. BBA - Biomembranes, 2000, 1469, 87-99.	7.9	52
125	Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS ONE, 2018, 13, e0192851.	1.1	52
126	Sequence analyses and evolutionary relationships among the energyâ€coupling proteins enzyme I and HPr of the bacterial phosphoenolpyruvate: Sugar phosphotransferase system. Protein Science, 1993, 2, 506-521.	3.1	51

#	Article	IF	CITATIONS
127	A Novel Mechanism of Transposon-Mediated Gene Activation. PLoS Genetics, 2009, 5, e1000689.	1.5	51
128	The Bacterial Intimins and Invasins: A Large and Novel Family of Secreted Proteins. PLoS ONE, 2010, 5, e14403.	1.1	50
129	Multidrug Resistance: Phylogenetic Characterization of Superfamilies of Secondary Carriers that Include Drug Exporters. Methods in Molecular Biology, 2010, 637, 47-64.	0.4	50
130	Sec61β – a component of the archaeal protein secretory system. Trends in Biochemical Sciences, 2002, 27, 170-171.	3.7	49
131	Adaptive regulatory control of system a transport activity in a kidney epithelial cell line (MDCK) and in a transformed variant (MDCK-T1). Journal of Cellular Physiology, 1985, 122, 308-315.	2.0	48
132	Evolutionary relationship between 5+5 and 7+7 inverted repeat folds within the amino acid-polyamine-organocation superfamily. Proteins: Structure, Function and Bioinformatics, 2014, 82, 336-346.	1.5	48
133	Low resolution solution structure of theBacillus subtilisglucose permease IIA domain derived from heteronuclear three-dimensional NMR spectroscopy. FEBS Letters, 1992, 296, 148-152.	1.3	47
134	Phylogeny of phosphoryl transfer proteins of the phosphoenolpyruvate-dependent sugar-transporting phosphotransferase system. Research in Microbiology, 2002, 153, 405-415.	1.0	47
135	Evolution of bacterial type III protein secretion systems. Trends in Microbiology, 2004, 12, 113-115.	3.5	47
136	Bioinformatic Analyses of Transmembrane Transport: Novel Software for Deducing Protein Phylogeny, Topology, and Evolution. Journal of Molecular Microbiology and Biotechnology, 2009, 17, 163-176.	1.0	47
137	The transporter–opsin– <scp>G</scp> Âproteinâ€coupled receptor (<scp>TOG</scp>) superfamily. FEBS Journal, 2013, 280, 5780-5800.	2.2	46
138	The involvement of transport proteins in transcriptional and metabolic regulation. Current Opinion in Microbiology, 2014, 18, 8-15.	2.3	45
139	Eukaryotic Transmembrane Solute Transport Systems. International Review of Cytology, 1999, 190, 61-136.	6.2	44
140	Phylogenetic Characterization of Transport Protein Superfamilies: Superiority of SuperfamilyTree Programs over Those Based on Multiple Alignments. Journal of Molecular Microbiology and Biotechnology, 2011, 21, 83-96.	1.0	44
141	Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. International Journal of Molecular Sciences, 2020, 21, 1791.	1.8	44
142	Phosphorylation of serineâ€46 in HPr, a key regulatory protein in bacteria, results in stabilization of its solution structure. Protein Science, 1995, 4, 2478-2486.	3.1	43
143	Differential codon usage: a safeguard against inappropriate expression of specialized genes?. FEBS Letters, 1995, 362, 1-4.	1.3	43
144	Cra-mediated regulation of Escherichia coli adenylate cyclase. Microbiology (United Kingdom), 1997, 143, 785-792.	0.7	43

#	Article	IF	CITATIONS
145	The structure of an energy-coupling protein from bacteria, IIBcellobiose, reveals similarity to eukaryotic protein tyrosine phosphatases. Structure, 1997, 5, 217-225.	1.6	43
146	Evolution of the Oligopeptide Transporter Family. Journal of Membrane Biology, 2011, 240, 89-110.	1.0	43
147	Transport protein evolution deduced from analysis of sequence, topology and structure. Current Opinion in Structural Biology, 2016, 38, 9-17.	2.6	43
148	A web-based Tree View (TV) program for the visualization of phylogenetic trees. Journal of Molecular Microbiology and Biotechnology, 2002, 4, 69-70.	1.0	43
149	Size Comparisons among Integral Membrane Transport Protein Homologues in Bacteria , Archaea , and Eucarya. Journal of Bacteriology, 2001, 183, 1012-1021.	1.0	42
150	The phosphocarrier protein HPr of the bacterial phosphotransferase system globally regulates energy metabolism by directly interacting with multiple enzymes in Escherichia coli. Journal of Biological Chemistry, 2017, 292, 14250-14257.	1.6	42
151	Topological analysis of integral membrane constituents of prokaryotic ABC efflux systems. Research in Microbiology, 2005, 156, 270-277.	1.0	41
152	Extra domains in secondary transport carriers and channel proteins. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1557-1579.	1.4	41
153	Evolutionary origins of members of a superfamily of integral membrane cytochrome c biogenesis proteins. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2164-2181.	1.4	41
154	Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183277.	1.4	40
155	Unique Regulation of Carbohydrate Chemotaxis in <i>Bacillus subtilis</i> by the Phosphoenolpyruvate-Dependent Phosphotransferase System and the Methyl-Accepting Chemotaxis Protein McpC. Journal of Bacteriology, 1998, 180, 4475-4480.	1.0	40
156	Introduction: Protein phosphorylation and signal transduction in bacteria. Journal of Cellular Biochemistry, 1993, 51, 1-6.	1.2	39
157	Catalytic activities associated with the enzymes II of the bacterial phosphotransferase system. Journal of Supramolecular Structure, 1980, 14, 281-294.	2.3	38
158	Molecular modeling of the bacterial outer membrane receptor energizer, ExbBD/TonB, based on homology with the flagellar motor, MotAB. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1614, 201-210.	1.4	38
159	Probiotics and Prebiotics in Human Health. Journal of Molecular Microbiology and Biotechnology, 2005, 10, 22-25.	1.0	38
160	Decrease in protein content and cell volume of cultured dog kidney epithelial cells during growth. In Vitro, 1982, 18, 196-202.	1.2	37
161	Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: Sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria. Journal of Molecular Evolution, 1991, 33, 179-193.	0.8	37
162	Genes Involved in Control of Galactose Uptake in Lactobacillus brevis and Reconstitution of the Regulatory System in Bacillus subtilis. Journal of Bacteriology, 2001, 183, 3224-3236.	1.0	37

#	Article	IF	CITATIONS
163	Domain analysis of transcriptional regulators bearing PTS regulatory domains. Research in Microbiology, 2002, 153, 519-526.	1.0	37
164	The phagosomal nutrient transporter (Pht) family. Microbiology (United Kingdom), 2008, 154, 42-53.	0.7	37
165	Functional Promiscuity of Homologues of the Bacterial ArsA ATPases. International Journal of Microbiology, 2010, 2010, 1-21.	0.9	37
166	Transposon-Mediated Adaptive and Directed Mutations and Their Potential Evolutionary Benefits. Journal of Molecular Microbiology and Biotechnology, 2011, 21, 59-70.	1.0	37
167	Sequence of thefruBgene ofEscherichia coliencoding the diphosphoryl transfer protein (DTP) of the phosphoenolpyruvate: sugar phosphotransferase system. FEMS Microbiology Letters, 1994, 118, 159-162.	0.7	36
168	The Escherichia coli ABC transporters: an update. Molecular Microbiology, 1999, 32, 887-889.	1.2	36
169	Bioinformatic Analyses of the Bacterial L-Ascorbate Phosphotransferase System Permease Family. Journal of Molecular Microbiology and Biotechnology, 2003, 6, 191-205.	1.0	36
170	Genetic Implication of a Novel Thiamine Transporter in Human Hypertension. Journal of the American College of Cardiology, 2014, 63, 1542-1555.	1.2	36
171	Evidence for the Functional Association of Enzyme I and HPr of the Phosphoenolpyruvate-Sugar Phosphotransferase System With the Membrane in Sealed Vesicles of Escherichia coli. Journal of Cellular Biochemistry, 1982, 18, 231-238.	1.2	35
172	Topological Predictions for Integral Membrane Permeases of the Phosphoenolpyruvate:Sugar Phosphotransferase System. Journal of Molecular Microbiology and Biotechnology, 2006, 11, 345-360.	1.0	35
173	Novel phosphotransferase system genes revealed by bacterial genome analysis: Unique, putative fructose―and glucosideâ€specific systems. Protein Science, 1994, 3, 440-450.	3.1	34
174	Characterization of a novel transporter family that includes multiple Escherichia coli gluconate transporters and their homologues. FEMS Microbiology Letters, 2006, 147, 233-238.	0.7	34
175	Comparative genomics of transport proteins in seven Bacteroides species. PLoS ONE, 2018, 13, e0208151.	1.1	34
176	Demonstration of protein—protein interaction specificity by NMR chemical shift mapping. Protein Science, 1997, 6, 2624-2627.	3.1	32
177	The Bacterial Chromosome. Critical Reviews in Biochemistry and Molecular Biology, 2008, 43, 89-134.	2.3	32
178	A mechanism of transposonâ€mediated directed mutation. Molecular Microbiology, 2009, 74, 29-43.	1.2	32
179	Convergence and divergence in the evolution of transport proteins. BioEssays, 1994, 16, 23-29.	1.2	31
180	Alterations in growth requirements of kidney epithelial cells in defined medium associated with malignant transformation. Journal of Supramolecular Structure and Cellular Biochemistry, 1981, 15, 63-72.	1.4	30

#	Article	IF	CITATIONS
181	Regulation of Lactose Transport by the Phosphoenolpyruvate-Sugar Phosphotransferase System in Membrane Vesicles of Escherichia coli. Journal of Cellular Biochemistry, 1982, 18, 239-244.	1.2	30
182	Bacterial proteins with N-terminal leader sequences resembling mitochondrial targeting sequences of eukaryotes. Biochimie, 1988, 70, 1743-1748.	1.3	30
183	Genomic Analyses of Transport Proteins inRalstonia metallidurans. Comparative and Functional Genomics, 2005, 6, 17-56.	2.0	30
184	The Iron/Lead Transporter Superfamily of Fe ³⁺ /Pb ²⁺ Uptake Systems. Journal of Molecular Microbiology and Biotechnology, 2006, 11, 1-9.	1.0	30
185	A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency. BMC Systems Biology, 2008, 2, 27.	3.0	30
186	Evolutionary relationships of ATP-Binding Cassette (ABC) uptake porters. BMC Microbiology, 2013, 13, 98.	1.3	30
187	The ubiquitous ThrE family of putative transmembrane amino acid efflux transporters. Research in Microbiology, 2002, 153, 19-25.	1.0	29
188	The Urea Transporter (UT) Family: Bioinformatic Analyses Leading to Structural, Functional, and Evolutionary Predictions. Receptors and Channels, 2003, 9, 345-352.	1.1	28
189	The Cecropin Superfamily of Toxic Peptides. Journal of Molecular Microbiology and Biotechnology, 2006, 11, 94-103.	1.0	28
190	Comprehensive analysis of transport proteins encoded within the genome of Bdellovibrio bacteriovorus. Genomics, 2007, 90, 424-446.	1.3	28
191	Microcompartments and Protein Machines in Prokaryotes. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 243-269.	1.0	28
192	Reversing Transmembrane Electron Flow: The DsbD and DsbB Protein Families. Journal of Molecular Microbiology and Biotechnology, 2003, 5, 133-149.	1.0	27
193	The IUBMB-Endorsed Transporter Classification System. , 2003, 227, 21-36.		27
194	Sequence similarity between multidrug resistance efflux pumps of the ABC and RND superfamilies. Microbiology (United Kingdom), 2004, 150, 2493-2495.	0.7	27
195	The bacterial phosphotransferase system: Kinetic characterization of the glucose, mannitol, glucitol, and N-acetylglucosamine systems. Journal of Cellular Biochemistry, 1986, 31, 97-105.	1.2	26
196	Metabolite-induced metabolons: the activation of transporter-enzyme complexes by substrate binding. Molecular Microbiology, 1999, 31, 1592-1595.	1.2	26
197	Membrane-fusion protein homologues in Gram-positive bacteria. Molecular Microbiology, 2000, 36, 516-517.	1.2	25
198	The LysE Superfamily of Transport Proteins Involved in Cell Physiology and Pathogenesis. PLoS ONE, 2015, 10, e0137184.	1.1	25

#	Article	IF	CITATIONS
199	Sequence similarity between the channel-forming domains of voltage-gated ion channel proteins and the C-terminal domains of secondary carriers of the major facilitator superfamily. Microbiology (United Kingdom), 2002, 148, 3760-3762.	0.7	25
200	Phylogenetic analyses of the homologous transmembrane channel-forming proteins of the F0F1-ATPases of bacteria, chloroplasts and mitochondria. Microbiology (United Kingdom), 1996, 142, 17-32.	0.7	25
201	Transport capabilities encoded within the Bacillus subtilis genome. Journal of Molecular Microbiology and Biotechnology, 2002, 4, 37-67.	1.0	25
202	The putative Na+/H+antiporter (NapA) ofEnterococcus hiraeis homologous to the putative K+/H+antiporter (KefC) ofEscherichia coli. FEMS Microbiology Letters, 1992, 94, 161-163.	0.7	24
203	Biofilm-Defective Mutants of <i>Bacillus subtilis</i> . Journal of Molecular Microbiology and Biotechnology, 2004, 8, 177-188.	1.0	24
204	Pathways of transport protein evolution: recent advances. Biological Chemistry, 2011, 392, 5-12.	1.2	24
205	Comparative analyses of transport proteins encoded within the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 776-797.	1.4	24
206	Transformative research: definitions, approaches and consequences. Theory in Biosciences, 2012, 131, 117-123.	0.6	23
207	Regulation of <i>crp</i> Gene Expression by the Catabolite Repressor/Activator, Cra, in <i>Escherichia coli</i> . Journal of Molecular Microbiology and Biotechnology, 2014, 24, 135-141.	1.0	23
208	The Membrane Attack Complex/Perforin Superfamily. Journal of Molecular Microbiology and Biotechnology, 2017, 27, 252-267.	1.0	23
209	Cooperative interaction between Cra and Fnr in the regulation of the cydAB operon of Escherichia coli. Current Microbiology, 1996, 33, 270-274.	1.0	22
210	The NMR sideâ€chain assignments and solution structure of enzyme HB ^{cellobiose} of the phosphoenolpyruvateâ€dependent phosphotransferase system of <i>Escherichia coli</i> . Protein Science, 1997, 6, 304-314.	3.1	22
211	NMR structure of cysteinyl-phosphorylated enzyme IIB of the N,Nâ€2-diacetylchitobiose-specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Journal of Molecular Biology, 2001, 308, 993-1009.	2.0	22
212	Protein-Translocating Trimeric Autotransporters of Gram-Negative Bacteria. Journal of Bacteriology, 2006, 188, 5655-5667.	1.0	22
213	Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins. PLoS ONE, 2016, 11, e0152733.	1.1	22
214	Amiloride-resistant Madin-Darby Canine kidney (MDCK) cells exhibit decreased cation transport. Journal of Cellular Physiology, 1981, 106, 191-199.	2.0	21
215	Protein Phosphorylation in Bacteria?Regulation of Gene Expression, Transport Functions, and Metabolic Processes. Angewandte Chemie International Edition in English, 1988, 27, 1040-1049.	4.4	21
216	Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidyl glycerol in Escherichia coli: Studies with a pgsA mutant lacking phosphatidyl glycerophosphate synthase. Research in Microbiology, 2002, 153, 667-677.	1.0	21

#	Article	IF	CITATIONS
217	Web-Based Programs for the Display and Analysis of Transmembrane α-Helices in Aligned Protein Sequences. Journal of Molecular Microbiology and Biotechnology, 2003, 5, 1-6.	1.0	21
218	Comparative genomics of transport proteins in developmental bacteria: Myxococcus xanthus and Streptomyces coelicolor. BMC Microbiology, 2013, 13, 279.	1.3	21
219	Comparative genomics of transport proteins in probiotic and pathogenic Escherichia coli and Salmonella enterica strains. Microbial Pathogenesis, 2017, 107, 106-115.	1.3	21
220	Protein uptake intoE. collduringBdellovibrioinfection. FEBS Letters, 1994, 337, 14-17.	1.3	20
221	Function of the Duplicated IIB Domain and Oligomeric Structure of the Fructose Permease of Escherichia coli. Journal of Biological Chemistry, 1996, 271, 9997-10003.	1.6	20
222	Inducer Expulsion and the Occurrence of an HPr(Ser-P)-Activated Sugar-Phosphate Phosphatase in Enterococcus Faecalis and Streptococcus Pyogenes. Microbiology (United Kingdom), 1996, 142, 585-592.	0.7	20
223	Evolutionary appearance of H+-translocating pyrophosphatases. Microbiology (United Kingdom), 2006, 152, 1243-1247.	0.7	20
224	Protein Secretion and Membrane Insertion Systems in Bacteria and Eukaryotic Organelles. Advances in Applied Microbiology, 2008, 65, 141-197.	1.3	20
225	Bioinformatic characterization of the 4-Toluene Sulfonate Uptake Permease (TSUP) family of transmembrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 703-717.	1.4	20
226	Transport proteins promoting Escherichia coli pathogenesis. Microbial Pathogenesis, 2014, 71-72, 41-55.	1.3	20
227	Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium. Microbiology (United Kingdom), 2002, 148, 123-131.	0.7	20
228	Nucleotide sequence and expression of the gutQ gene within the glucitol operon of Escherichia coli. DNA Sequence, 1990, 1, 141-145.	0.7	19
229	The Autoinducer-2 Exporter Superfamily. Journal of Molecular Microbiology and Biotechnology, 2010, 18, 195-205.	1.0	19
230	Precise Excision of IS <i>5</i> from the Intergenic Region between the <i>fucPIK</i> and the <i>fucAO</i> Operons and Mutational Control of <i>fucPIK</i> Operon Expression in <i>Escherichia coli</i> . Journal of Bacteriology, 2010, 192, 2013-2019.	1.0	19
231	Reliability of Nine Programs of Topological Predictions and Their Application to Integral Membrane Channel and Carrier Proteins. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 161-190.	1.0	19
232	The Nitrogen Regulatory PII Protein (GlnB) and <i>N</i> -Acetylglucosamine 6-Phosphate Epimerase (NanE) Allosterically Activate Glucosamine 6-Phosphate Deaminase (NagB) in Escherichia coli. Journal of Bacteriology, 2018, 200, .	1.0	19
233	Hormonal regulation of the system a amino acid transport adaptive response mechanism in a kidney epithelial cell line (MDCK). Journal of Cellular Physiology, 1985, 122, 316-322.	2.0	18
234	cAMP-cAMP receptor protein complex: five binding sites in the control region of the Escherichia coli mannitol operon. Microbiology (United Kingdom), 1995, 141, 1901-1907.	0.7	18

#	Article	IF	CITATIONS
235	Phylogenetic Approaches to the Identification and Characterization of Protein Families and Superfamilies. Genome Science & Technology, 1996, 1, 129-150.	1.2	18
236	The YedZ Family: Possible Heme Binding Proteins That Can Be Fused to Transporters and Electron Carriers. Journal of Molecular Microbiology and Biotechnology, 2004, 8, 129-140.	1.0	18
237	A simple sensitive program for detecting internal repeats in sets of multiply aligned homologous proteins. Journal of Molecular Microbiology and Biotechnology, 2002, 4, 375-7.	1.0	18
238	Novel Phosphotransferase System Genes Revealed by Bacterial Genome Analysis: Operons Encoding Homologues of Sugar-Specific Permease Domains of the Phosphotransferase System and Pentose Catabolic Enzymes. Genome Science & Technology, 1996, 1, 53-75.	1.2	17
239	Biochemical Characterization of Phosphoryl Transfer Involving HPr of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Treponema denticola, an Organism that Lacks PTS Permeases. Biochemistry, 2005, 44, 598-608.	1.2	17
240	Mercury Transport in Bacteria. Water, Air, and Soil Pollution, 2007, 182, 219.	1.1	17
241	Animal Ca2+ release-activated Ca2+ (CRAC) channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators. BMC Research Notes, 2010, 3, 158.	0.6	17
242	Bioinformatic Characterization of the Trimeric Intracellular Cation-Specific Channel Protein Family. Journal of Membrane Biology, 2011, 241, 77-101.	1.0	17
243	Environment-directed activation of the Escherichia coli flhDC operon by transposons. Microbiology (United Kingdom), 2017, 163, 554-569.	0.7	17
244	MicroCorrespondance. Molecular Microbiology, 1996, 22, 389-391.	1.2	16
245	Evolution of Transport Proteins. , 2001, 23, 1-10.		16
246	Hyperstructures, genome analysis and I-cells. Acta Biotheoretica, 2002, 50, 357-373.	0.7	16
247	Psychobiotics and Their Involvement in Mental Health. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 211-214.	1.0	16
248	A novel zincâ€binding motif found in two ubiquitous deaminase families. Protein Science, 1994, 3, 853-856.	3.1	15
249	Topological and segmental phylogenetic analyses of the anion exchanger (band 3) family of transporters. Molecular Membrane Biology, 1995, 12, 193-200.	2.0	15
250	The Bioinformatic Study of Transmembrane Molecular Transport. Journal of Molecular Microbiology and Biotechnology, 2006, 11, 289-290.	1.0	15
251	Hopping into a hot seat: Role of DNA structural features on IS5-mediated gene activation and inactivation under stress. PLoS ONE, 2017, 12, e0180156.	1.1	15
252	Understanding the Genetic Code. Journal of Bacteriology, 2019, 201, .	1.0	15

#	Article	IF	CITATIONS
253	A functional-phylogenetic system for the classification of transport proteins. Journal of Cellular Biochemistry, 1999, 75, 84-94.	1.2	15
254	Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 193-215.	1.4	14
255	A Proposed System for the Classification of Transmembrane Transport Proteins in Living Organisms. , 1999, , 265-276.		14
256	Transport Mechanisms. , 0, , 133-156.		14
257	Paralogous genes encoding transport proteins in microbial genomes. Research in Microbiology, 1999, 150, 689-699.	1.0	13
258	Voltage-gated H + channels associated with human phagocyte superoxide-generating NADPH oxidases: Sequence comparisons, structural predictions, and phylogenetic analyses. Molecular Membrane Biology, 2002, 19, 137-147.	2.0	13
259	Soluble sugar permeases of the phosphotransferase system in Escherichia coli: evidence for two physically distinct forms of the proteins in vivo. Molecular Microbiology, 2003, 48, 131-141.	1.2	13
260	Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidylethanolamine in Escherichia coli: studies with a pssA mutant lacking phosphatidylserine synthase. Archives of Microbiology, 2004, 181, 26-34.	1.0	13
261	The bestrophin family of anion channels: identification of prokaryotic homologues. Molecular Membrane Biology, 2005, 22, 291-302.	2.0	13
262	Membranous Organelles in Bacteria. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 5-12.	1.0	13
263	Major Facilitator Superfamily Porters, LacY, FucP and XylE of <i>Escherichia coli</i> Appear to Have Evolved Positionally Dissimilar Catalytic Residues without Rearrangement of 3-TMS Repeat Units. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 82-90.	1.0	13
264	Key challenges for the creation and maintenance of specialist protein resources. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1005-1013.	1.5	13
265	Identification of a transcription factor, PunR, that regulates the purine and purine nucleoside transporter punC in E. coli. Communications Biology, 2021, 4, 991.	2.0	13
266	Lipid dependencies, biogenesis and cytoplasmic micellar forms of integral membrane sugar transport proteins of the bacterial phosphotransferase system. Microbiology (United Kingdom), 2013, 159, 2213-2224.	0.7	13
267	Protein Secretion Systems in Gram-Negative Bacteria. Microbe Magazine, 2006, 1, 414-419.	0.4	13
268	Genome Sequencing and Informatics: New Tools for Biochemical Discoveries. Plant Physiology, 1998, 117, 1129-1133.	2.3	12
269	Identification of the I -Aspartate Transporter in Bacillus subtilis. Journal of Bacteriology, 2003, 185, 3218-3222.	1.0	12
270	Sequence Analyses of Cyanobacterial Bicarbonate Transporters and Their Homologues. Journal of Molecular Microbiology and Biotechnology, 2004, 7, 102-108.	1.0	12

#	Article	IF	CITATIONS
271	Are Megacities Sustainable?. Water, Air, and Soil Pollution, 2008, 191, 1-3.	1.1	12
272	Comparative genomics of the transportome of Ten Treponema species. Microbial Pathogenesis, 2019, 132, 87-99.	1.3	12
273	Studies on the Escherichia coli glucose-specific permease, PtsC, with a point mutation in its N-terminal amphipathic leader sequence. Microbiology (United Kingdom), 2003, 149, 763-771.	0.7	11
274	Hypothesis: Chemotaxis in <i>Escherichia coli</i> Results from Hyperstructure Dynamics. Journal of Molecular Microbiology and Biotechnology, 2005, 10, 1-14.	1.0	11
275	Comprehensive Analyses of Transport Proteins Encoded Within the Genome of "Aromatoleum aromaticum―Strain EbN1. Journal of Membrane Biology, 2009, 229, 53-90.	1.0	11
276	Thermodynamic perspectives on genetic instructions, the laws of biology and diseased states. Comptes Rendus - Biologies, 2011, 334, 1-5.	0.1	11
277	Major Facilitator Superfamily (MFS) evolved without 3-transmembrane segment unit rearrangements. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1162-3.	3.3	11
278	Transposon-mediated directed mutation in bacteria and eukaryotes. Frontiers in Bioscience - Landmark, 2017, 22, 1458-1468.	3.0	11
279	The uridylyltransferase GlnD and tRNA modification GTPase MnmE allosterically control Escherichia coli folylpoly-Î ³ -glutamate synthase FolC. Journal of Biological Chemistry, 2018, 293, 15725-15732.	1.6	11
280	Comparative Genomics of the Transport Proteins of Ten Lactobacillus Strains. Genes, 2020, 11, 1234.	1.0	11
281	Expansion of the Transporter-Opsin-G protein-coupled receptor superfamily with five new protein families. PLoS ONE, 2020, 15, e0231085.	1.1	11
282	Nucleotide sequence of the region betweencrrandcysMinSalmonella typhimurium: Five novel ORFs including one encoding a putative transcriptional regulator of the phosphotransferase system. DNA Sequence, 1995, 5, 145-152.	0.7	10
283	Families of Transporters and Their Classification. , 0, , 1-17.		10
284	Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins. Journal of Membrane Biology, 2010, 235, 145-162.	1.0	10
285	Identifying Relevant Data for a Biological Database: Handcrafted Rules versus Machine Learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 851-857.	1.9	10
286	Biophysical Studies of the Membrane-Embedded and Cytoplasmic Forms of the Glucose-Specific Enzyme II of the E. coli Phosphotransferase System (PTS). PLoS ONE, 2011, 6, e24088.	1.1	10
287	Transposon-mediated directed mutation controlled by DNA binding proteins in Escherichia coli. Frontiers in Microbiology, 2014, 5, 390.	1.5	10
288	Comparative analyses of transport proteins encoded within the genomes of Leptospira species. Microbial Pathogenesis, 2016, 98, 118-131.	1.3	10

#	Article	IF	CITATIONS
289	Learning to Find Relevant Biological Articles without Negative Training Examples. Lecture Notes in Computer Science, 2008, , 202-213.	1.0	10
290	Enzyme IIB ^{bcellobiose} of the phosphoenolâ€pyruvateâ€dependent phosphotransferase system of <i>Escherichia coli</i> : Backbone assignment and secondary structure determined by threeâ€dimensional NMR spectroscopy. Protein Science, 1994, 3, 282-290.	3.1	9
291	Is FatP a long-chain fatty acid transporter?. Molecular Microbiology, 1999, 33, 670-672.	1.2	9
292	Characterization of Soluble Enzyme II Complexes of the Escherichia coli Phosphotransferase System. Journal of Bacteriology, 2004, 186, 8453-8462.	1.0	9
293	Bioinformatic Analyses of Bacterial Mercury Ion (Hg2+) Transporters. Water, Air, and Soil Pollution, 2012, 223, 4443-4457.	1.1	9
294	Transposon-mediated activation of the Escherichia coli glpFK operon is inhibited by specific DNA-binding proteins: Implications for stress-induced transposition events. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 793-794, 22-31.	0.4	9
295	Effects of 5-azacytidine, sodium butyrate, and phorbol esters on amino acid transport system A in a kidney epithelial cell line, MDCK: Evidence for multiple mechanisms of regulation. Journal of Cellular Physiology, 1988, 137, 117-124.	2.0	8
296	DNA sequence of a gene in Escherichia coli encoding a putative tripartite transcription factor with receiver, ATPase and DNA binding domains. DNA Sequence, 1994, 5, 17-24.	0.7	8
297	Regulation of <i>pho</i> Regulon Gene Expression by the Carbon Control Protein A, CcpA, in <i>Bacillus subtilis</i> . Journal of Molecular Microbiology and Biotechnology, 2005, 10, 40-50.	1.0	8
298	Bioinformatic analyses of bacterial HPr kinase/phosphorylase homologues. Research in Microbiology, 2005, 156, 443-451.	1.0	8
299	Lactic Acid Bacteria: Comparative Genomic Analyses of Transport Systems. , 0, , 73-87.		8
300	Subcellular Localization and Logistics of Integral Membrane Protein Biogenesis inEscherichia coli. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 24-34.	1.0	8
301	Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat: Figure 1 Database: the Journal of Biological Databases and Curation, 2015, 2015, bav063.	1.4	8
302	Finding Transport Proteins in a General Protein Database. Lecture Notes in Computer Science, 2007, , 54-66.	1.0	8
303	Evolution of the Bacterial Flagellum. Microbe Magazine, 2007, 2, 335-340.	0.4	8
304	An Automated Program to Screen Databases for Members of Protein Families. Journal of Molecular Microbiology and Biotechnology, 2003, 5, 7-10.	1.0	7
305	Bioinformatic Analyses of Gram-Negative Bacterial OstA Outer Membrane Assembly Homologues. Current Genomics, 2006, 7, 447-461.	0.7	7
306	Active Transport in Communication, Protection and Nutrition. Journal of Molecular Microbiology and Biotechnology, 2007, 12, 161-164.	1.0	7

#	Article	IF	CITATIONS
307	Are Megacities Sustainable?. Water, Air, and Soil Pollution, 2007, 178, 1-3.	1.1	7
308	Bacterial Adaptor Membrane Fusion Proteins and the Structurally Dissimilar Outer Membrane Auxiliary Proteins Have Exchanged Central Domains in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi>-Proteobacteria. International Journal of Microbiology, 2010, 2010, 1-5.</mml:math 	0.9	7
309	Overall Transport Capabilities of Bacillus subtilis. , 2014, , 111-128.		7
310	Comparative genomic analyses of transport proteins encoded within the genomes of Leptospira species. Microbial Pathogenesis, 2015, 88, 52-64.	1.3	7
311	Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus , Galdieria sulphuraria , and Cyanidioschyzon merolae 11. Journal of Phycology, 2017, 53, 503-521.	1.0	7
312	Phylogenetic characterization of the epithelial Na ⁺ channel (ENaC) family. Molecular Membrane Biology, 1996, 13, 149-157.	2.0	6
313	HatA and HatR, implicated in the uptake of inorganic carbon in Synechocystis PCC6803, contain WD40 domains. Molecular Microbiology, 1997, 24, 229-230.	1.2	6
314	Engineering Transport Protein Function: Theoretical and Technical Considerations Using the Sugar-Transporting Phosphotransferase System of <i>Escherichia coli</i> as a Model System. Journal of Molecular Microbiology and Biotechnology, 2006, 11, 302-307.	1.0	6
315	Beneficial bacteria and bioremediation. Water, Air, and Soil Pollution, 2007, 184, 1-3.	1.1	6
316	Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins. Microbiology (United Kingdom), 2014, 160, 1679-1689.	0.7	6
317	The complexity, challenges and benefits of comparing two transporter classification systems in TCDB and Pfam. Briefings in Bioinformatics, 2015, 16, 865-872.	3.2	6
318	Comparative Analyses of Transport Proteins Encoded within the Genomes of Bdellovibrio bacteriovorus HD100 and Bdellovibrio exovorus JSS. Journal of Molecular Microbiology and Biotechnology, 2017, 27, 332-349.	1.0	6
319	Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system. PLoS ONE, 2019, 14, e0219332.	1.1	6
320	The glucitol permease of Escherichia coli: a tripartite permease of the phosphotransferase system. Microbiology (United Kingdom), 1998, 144, 1463-1464.	0.7	6
321	Mechanism of CcpA-Mediated Glucose Repression of the <i>resABCDE</i> Operon of <i>Bacillus subtilis</i> . Journal of Molecular Microbiology and Biotechnology, 2006, 11, 104-110.	1.0	5
322	Characterization of the <i>E. coli</i> glucose permease fused to the maltoseâ€binding protein. Journal of Basic Microbiology, 2008, 48, 3-9.	1.8	5
323	Education for Humanity. Water, Air, and Soil Pollution, 2010, 206, 1-2.	1.1	5
324	Conformational Transition Pathway in the Inhibitor Binding Process of Human Monoacylglycerol Lipase. Protein Journal, 2014, 33, 503-511.	0.7	5

#	Article	IF	CITATIONS
325	Conserved movement of TMS11 between occluded conformations of LacY and XylE of the major facilitator superfamily suggests a similar hingeâ€like mechanism. Proteins: Structure, Function and Bioinformatics, 2015, 83, 735-745.	1.5	5
326	Control of Transposon-Mediated Directed Mutation by the <i>Escherichia coli</i> Phosphoenolpyruvate:Sugar Phosphotransferase System. Journal of Molecular Microbiology and Biotechnology, 2015, 25, 226-233.	1.0	5
327	Comparative population genomic analyses of transporters within the Asgard archaeal superphylum. PLoS ONE, 2021, 16, e0247806.	1.1	5
328	A systems approach discovers the role and characteristics of seven LysR type transcription factors in Escherichia coli. Scientific Reports, 2022, 12, 7274.	1.6	5
329	High-resolution solution structure ofBacillus subtilis IIAglc. , 1998, 31, 258-270.		4
330	In vitro Interconversion of the Soluble and Membrane- Integrated Forms of the <i>Escherichia coli </i> Glucose Enzyme II of the Phosphoenolpyruvate-Dependent Sugar-Transporting Phosphotransferase System. Journal of Molecular Microbiology and Biotechnology, 2007, 12, 263-268.	1.0	4
331	Did Adaptive and Directed Mutation Evolve to Accelerate Stress-Induced Evolutionary Change?. Journal of Molecular Microbiology and Biotechnology, 2011, 21, 5-7.	1.0	4
332	Genetic Engineering of the Phosphocarrier Protein NPr of the Escherichia coli Phosphotransferase System Selectively Improves Sugar Uptake Activity. Journal of Biological Chemistry, 2012, 287, 29931-29939.	1.6	4
333	Comparative Genomic Analysis of Integral Membrane Transport Proteins in Ciliates. Journal of Eukaryotic Microbiology, 2015, 62, 167-187.	0.8	4
334	Comparative Analyses of the Transport Proteins Encoded within the Genomes of nine <i>Bifidobacterium</i> Species. Microbial Physiology, 2022, 32, 30-44.	1.1	4
335	Desertification and Migration. Water, Air, and Soil Pollution, 2010, 205, 31-32.	1.1	3
336	UN Climate Change Conference, Copenhagen 2009: Whatever Works?. Water, Air, and Soil Pollution, 2010, 207, 1-3.	1.1	3
337	Analysis of 58 Families of Holins Using a Novel Program, PhyST. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 381-388.	1.0	3
338	Characterization of the Tetraspan Junctional Complex (4JC) superfamily. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 402-414.	1.4	3
339	A Riboflavin Transporter in <i>Bdellovibrio exovorous</i> JSS. Journal of Molecular Microbiology and Biotechnology, 2019, 29, 27-34.	1.0	3
340	The Protein Interactome of Glycolysis in Escherichia coli. Proteomes, 2021, 9, 16.	1.7	3
341	Modelling Bacterial Hyperstructures with Cellular Automata. , 2006, , 147-156.		3
342	Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. , 2001, 39, 1366.		3

20

#	Article	IF	CITATIONS
343	Die Rolle des bakteriellen Phosphotransferase-Systems im Zuckermetabolismus. Biologie in Unserer Zeit, 1988, 18, 9-15.	0.3	2
344	[20] Computational Analyses Aiding Identification and Characterization of Proteins, Genes, and Operons. Methods in Molecular Genetics, 1995, , 375-386.	0.6	2
345	Families of Transporters: A Phylogenetic Overview. , 0, , 1-22.		2
346	The V-motifs facilitate the substrate capturing step of the PTS elevator mechanism. Journal of Structural Biology, 2016, 196, 496-502.	1.3	2
347	Time to Stop Holding the Elevator: A New Piece of the Transport Protein Mechanism Puzzle. Structure, 2016, 24, 845-846.	1.6	2
348	Difference distance map data of alternative crystal forms of UlaA. Data in Brief, 2017, 10, 198-201.	0.5	2
349	Transposon Mutagenesis in Disease, Drug Discovery, and Bacterial Evolution. , 2013, , 59-77.		2
350	Insertion Sequence (IS) Element-Mediated Activating Mutations of the Cryptic Aromatic β-Glucoside Utilization (BglGFB) Operon Are Promoted by the Anti-Terminator Protein (BglG) in Escherichia coli. International Journal of Molecular Sciences, 2022, 23, 1505.	1.8	2
351	Global Pollution: How Much Is Too Much?. Water, Air, and Soil Pollution, 2009, 204, 1-3.	1.1	1
352	A new direction for directed mutation?. Trends in Evolutionary Biology, 2011, 3, 3.	0.4	1
353	Science, Innovation and the Future of Humanity. Journal of Molecular Microbiology and Biotechnology, 2017, 27, 128-132.	1.0	1
354	Bacterial and Archaeal Cell Membranes. , 2019, , 333-333.		1
355	Protein-Protein Interactions in the Cytoplasmic Membrane of <i>Escherichia coli</i> : Influence of the Overexpression of Diverse Transporter-Encoding Genes on the Activities of PTS Sugar Uptake Systems. Microbial Physiology, 2020, 30, 36-49.	1.1	1
356	Molecular archeological studies of transmembrane transport systems. , 2010, , 29-43.		1
357	Our precarious planet. The Environmentalist, 2006, 26, 321-324.	0.7	Ο
358	Watchdogs and Whistleblowers. Water, Air, and Soil Pollution, 2009, 199, 1-2.	1.1	0
359	Water Crises. Water, Air, and Soil Pollution, 2010, 205, 27-28.	1.1	0
360	Goin' Fishin'. Water, Air, and Soil Pollution, 2010, 205, 29-30.	1.1	0

#	Article	IF	CITATIONS
361	Our Human Population and the Planet. Water, Air, and Soil Pollution, 2010, 205, 33-33.	1.1	Ο
362	Real Sustainability. Water, Air, and Soil Pollution, 2010, 205, 67-68.	1.1	0
363	Is Nuclear Energy the Solution?. Water, Air, and Soil Pollution, 2010, 208, 1-3.	1.1	0
364	The Crisis in Haiti, 2010: What's to be done?. Water, Air, and Soil Pollution, 2010, 212, 1-2.	1.1	0
365	Rebuttal to "A Vaccine Against Arrogance―by W. M. Briggs, W. Soon, D. Legates, and R. M. Carter. Water, Air, and Soil Pollution, 2011, 220, 7-8.	1.1	0
366	Discovery and Characterization of the Phospholemman/SIMP/Viroporin Superfamily. Microbial Physiology, 2022, 32, 83-94.	1.1	0
367	Title is missing!. , 2019, 14, e0219332.		0
368	Title is missing!. , 2019, 14, e0219332.		0
369	Title is missing!. , 2019, 14, e0219332.		0
370	Title is missing!. , 2019, 14, e0219332.		0