Chris J Schofield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2533705/publications.pdf

Version: 2024-02-01

460 papers 41,564 citations

91 h-index

3334

186 g-index

511 all docs

511 docs citations

511 times ranked

34101 citing authors

#	Article	IF	CITATIONS
1	Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O ₂ -Regulated Prolyl Hydroxylation. Science, 2001, 292, 468-472.	12.6	4,966
2	C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. Cell, 2001, 107, 43-54.	28.9	3,293
3	Oxygen sensing by HIF hydroxylases. Nature Reviews Molecular Cell Biology, 2004, 5, 343-354.	37.0	1,810
4	The Obesity-Associated <i>FTO </i> Gene Encodes a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Science, 2007, 318, 1469-1472.	12.6	1,305
5	The oncometabolite 2â€hydroxyglutarate inhibits histone lysine demethylases. EMBO Reports, 2011, 12, 463-469.	4.5	851
6	A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature, 2012, 488, 404-408.	27.8	822
7	Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature, 2002, 417, 975-978.	27.8	651
8	Hypoxia-inducible Factor (HIF) Asparagine Hydroxylase Is Identical to Factor Inhibiting HIF (FIH) and Is Related to the Cupin Structural Family. Journal of Biological Chemistry, 2002, 277, 26351-26355.	3.4	624
9	Structure of isopenicillinN synthase complexed with substrate and the mechanism ofpenicillin formation. Nature, 1997, 387, 827-830.	27.8	456
10	Expanding chemical biology of 2-oxoglutarate oxygenases. Nature Chemical Biology, 2008, 4, 152-156.	8.0	438
11	Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature, 1995, 375, 700-704.	27.8	434
12	Structural studies on 2-oxoglutarate oxygenases and related double-stranded \hat{l}^2 -helix fold proteins. Journal of Inorganic Biochemistry, 2006, 100, 644-669.	3.5	390
13	Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Current Opinion in Structural Biology, 1999, 9, 722-731.	5.7	370
14	Jmjd6 Catalyses Lysyl-Hydroxylation of U2AF65, a Protein Associated with RNA Splicing. Science, 2009, 325, 90-93.	12.6	356
15	Structure of a cephalosporin synthase. Nature, 1998, 394, 805-809.	27.8	344
16	Structure of Factor-inhibiting Hypoxia-inducible Factor (HIF) Reveals Mechanism of Oxidative Modification of HIF- $1\hat{l}\pm$. Journal of Biological Chemistry, 2003, 278, 1802-1806.	3.4	342
17	Inhibition of 2-oxoglutarate dependent oxygenases. Chemical Society Reviews, 2011, 40, 4364.	38.1	336
18	Structure and Mechanism of Anthocyanidin Synthase from Arabidopsis thaliana. Structure, 2002, 10, 93-103.	3.3	321

#	Article	IF	Citations
19	Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9814-9819.	7.1	310
20	Signalling hypoxia by HIF hydroxylases. Biochemical and Biophysical Research Communications, 2005, 338, 617-626.	2.1	305
21	Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature, 2007, 448, 87-91.	27.8	297
22	Methods for converting cysteine to dehydroalanine on peptides and proteins. Chemical Science, 2011, 2, 1666.	7.4	296
23	Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1α. Biochemical Journal, 2008, 416, 387-394.	3.7	278
24	2-Oxoglutarate-Dependent Oxygenases. Annual Review of Biochemistry, 2018, 87, 585-620.	11.1	276
25	Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends in Biochemical Sciences, 2011, 36, 7-18.	7. 5	260
26	Posttranslational hydroxylation of ankyrin repeats in IÂB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14767-14772.	7.1	258
27	Discovery and Optimization of Small-Molecule Ligands for the CBP/p300 Bromodomains. Journal of the American Chemical Society, 2014, 136, 9308-9319.	13.7	244
28	Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nature Structural Biology, 2000, 7, 127-133.	9.7	239
29	Structural studies on human 2-oxoglutarate dependent oxygenases. Current Opinion in Structural Biology, 2010, 20, 659-672.	5.7	238
30	Inhibitor Scaffolds for 2-Oxoglutarate-Dependent Histone Lysine Demethylases. Journal of Medicinal Chemistry, 2008, 51, 7053-7056.	6.4	221
31	The hypoxiaâ€inducible transcription factor pathway regulates oxygen sensing in the simplest animal, <i>Trichoplax adhaerens</i> . EMBO Reports, 2011, 12, 63-70.	4.5	210
32	The enzymes of \hat{I}^2 -lactam biosynthesis. Natural Product Reports, 2013, 30, 21-107.	10.3	208
33	Structural Basis for Binding of Hypoxia-Inducible Factor to the Oxygen-Sensing Prolyl Hydroxylases. Structure, 2009, 17, 981-989.	3.3	205
34	Structural basis of metallo-l²-lactamase, serine-l²-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nature Communications, 2016, 7, 12406.	12.8	202
35	Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochemical Journal, 2007, 401, 227-234.	3.7	196
36	Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the \hat{l}^2 -carbon of asparagine-803. Biochemical Journal, 2002, 367, 571-575.	3.7	194

#	Article	IF	Citations
37	Structural and Mechanistic Studies on the Inhibition of the Hypoxia-inducible Transcription Factor Hydroxylases by Tricarboxylic Acid Cycle Intermediates. Journal of Biological Chemistry, 2007, 282, 3293-3301.	3.4	194
38	Quantitative High-Throughput Screening Identifies 8-Hydroxyquinolines as Cell-Active Histone Demethylase Inhibitors. PLoS ONE, 2010, 5, e15535.	2.5	194
39	Asparaginyl Hydroxylation of the Notch Ankyrin Repeat Domain by Factor Inhibiting Hypoxia-inducible Factor. Journal of Biological Chemistry, 2007, 282, 24027-24038.	3.4	189
40	Mechanistic Studies on Three 2-Oxoglutarate-dependent Oxygenases of Flavonoid Biosynthesis. Journal of Biological Chemistry, 2004, 279, 1206-1216.	3.4	183
41	Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chemical Science, 2017, 8, 7651-7668.	7.4	174
42	Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases. Current Opinion in Structural Biology, 2012, 22, 691-700.	5.7	171
43	Targeting histone lysine demethylases â€" Progress, challenges, and the future. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1416-1432.	1.9	170
44	Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nature Communications, 2016, 7, 11974.	12.8	168
45	Human UTY(KDM6C) Is a Male-specific Nϊμ-Methyl Lysyl Demethylase. Journal of Biological Chemistry, 2014, 289, 18302-18313.	3.4	166
46	Recent Progress in Histone Demethylase Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 1308-1329.	6.4	165
47	Mechanisms of human histone and nucleic acid demethylases. Current Opinion in Chemical Biology, 2012, 16, 525-534.	6.1	163
48	Structure of human RNA <i>N</i> 6-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Research, 2014, 42, 4741-4754.	14.5	162
49	PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an NÎμ-dimethyl lysine demethylase. Human Molecular Genetics, 2010, 19, 217-222.	2.9	153
50	Epidithiodiketopiperazines Block the Interaction between Hypoxia-inducible Factor- $1\hat{1}\pm$ (HIF- $1\hat{1}\pm$) and p300 by a Zinc Ejection Mechanism. Journal of Biological Chemistry, 2009, 284, 26831-26838.	3.4	148
51	Differential Sensitivity of Hypoxia Inducible Factor Hydroxylation Sites to Hypoxia and Hydroxylase Inhibitors. Journal of Biological Chemistry, 2011, 286, 13041-13051.	3.4	148
52	Selective Inhibitors of the JMJD2 Histone Demethylases: Combined Nondenaturing Mass Spectrometric Screening and Crystallographic Approaches. Journal of Medicinal Chemistry, 2010, 53, 1810-1818.	6.4	146
53	2-Oxoglutarate analogue inhibitors of hif prolyl hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2677-2680.	2.2	144
54	Chemistry and biosynthesis of clavulanic acid and other clavams. Natural Product Reports, 1997, 14, 309.	10.3	143

#	Article	IF	Citations
55	Structural and Evolutionary Basis for the Dual Substrate Selectivity of Human KDM4 Histone Demethylase Family. Journal of Biological Chemistry, 2011, 286, 41616-41625.	3.4	143
56	Crystal structure of a clavaminate synthase-Fe(II)-2-oxoglutarate-substrate-NO complex: evidence for metal centred rearrangements. FEBS Letters, 2002, 517, 7-12.	2.8	142
57	5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation. Chemical Science, 2013, 4, 3110.	7.4	142
58	Bicyclic Boronate VNRX-5133 Inhibits Metallo- and Serine-Î ² -Lactamases. Journal of Medicinal Chemistry, 2019, 62, 8544-8556.	6.4	139
59	Structures of Human ALKBH5 Demethylase Reveal a Unique Binding Mode for Specific Single-stranded N6-Methyladenosine RNA Demethylation. Journal of Biological Chemistry, 2014, 289, 17299-17311.	3.4	138
60	Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nature Chemical Biology, 2012, 8, 960-962.	8.0	135
61	Structural Basis of Metallo- \hat{l}^2 -Lactamase Inhibition by Captopril Stereoisomers. Antimicrobial Agents and Chemotherapy, 2016, 60, 142-150.	3.2	134
62	Selective Inhibition of Factor Inhibiting Hypoxia-Inducible Factor. Journal of the American Chemical Society, 2005, 127, 7680-7681.	13.7	128
63	Structural Basis for Inhibition of the Fat Mass and Obesity Associated Protein (FTO). Journal of Medicinal Chemistry, 2013, 56, 3680-3688.	6.4	128
64	Plant Growth Regulator Daminozide Is a Selective Inhibitor of Human KDM2/7 Histone Demethylases. Journal of Medicinal Chemistry, 2012, 55, 6639-6643.	6.4	125
65	Protein Hydroxylation Catalyzed by 2-Oxoglutarate-dependent Oxygenases. Journal of Biological Chemistry, 2015, 290, 20712-20722.	3.4	124
66	Highly selective inhibition of histone demethylases by de novo macrocyclic peptides. Nature Communications, 2017, 8, 14773.	12.8	124
67	Expression of Idh1R132H in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis. Cancer Cell, 2016, 30, 578-594.	16.8	122
68	The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Reports, 2012, 13, 251-257.	4.5	120
69	Human AlkB Homologue 5 Is a Nuclear 2-Oxoglutarate Dependent Oxygenase and a Direct Target of Hypoxia-Inducible Factor 1α (HIF-1α). PLoS ONE, 2011, 6, e16210.	2.5	120
70	Structural basis for the broad-spectrum inhibition of metallo- \hat{l}^2 -lactamases by thiols. Organic and Biomolecular Chemistry, 2008, 6, 2282.	2.8	118
71	Investigating the dependence of the hypoxia-inducible factor hydroxylases (factor inhibiting HIF and) Tj $ETQq1\ 1$ 135-142.	0.784314 3.7	rgBT /Overlo
72	Mechanisms and structures of crotonase superfamily enzymes – How nature controls enolate and oxyanion reactivity. Cellular and Molecular Life Sciences, 2008, 65, 2507-2527.	5.4	112

#	Article	IF	CITATIONS
73	Studies on the active site of deacetoxycephalosporin C synthase. Journal of Molecular Biology, 1999, 287, 943-960.	4.2	111
74	Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4019-4024.	7.1	111
75	Pharmacological targeting of the HIF hydroxylases – A new field in medicine development. Molecular Aspects of Medicine, 2016, 47-48, 54-75.	6.4	111
76	Potent and Selective KDM5 Inhibitor Stops Cellular Demethylation of H3K4me3 at Transcription Start Sites and Proliferation of MM1S Myeloma Cells. Cell Chemical Biology, 2017, 24, 371-380.	5.2	111
77	Rhodanine hydrolysis leads to potent thioenolate mediated metallo- \hat{l}^2 -lactamase inhibition. Nature Chemistry, 2014, 6, 1084-1090.	13.6	110
78	Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nature Communications, 2016, 7, 12673.	12.8	109
79	Noninvasive Quantification of 2-Hydroxyglutarate in Human Gliomas with IDH1 and IDH2 Mutations. Cancer Research, 2016, 76, 43-49.	0.9	108
80	Insights into the Mechanistic Basis of Plasmid-Mediated Colistin Resistance from Crystal Structures of the Catalytic Domain of MCR-1. Scientific Reports, 2017, 7, 39392.	3.3	107
81	Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Science Translational Medicine, 2016, 8, 328ra29.	12.4	106
82	Selective Small Molecule Probes for the Hypoxia Inducible Factor (HIF) Prolyl Hydroxylases. ACS Chemical Biology, 2013, 8, 1488-1496.	3.4	105
83	OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4031-4036.	7.1	105
84	Pan-Histone Demethylase Inhibitors Simultaneously Targeting Jumonji C and Lysine-Specific Demethylases Display High Anticancer Activities. Journal of Medicinal Chemistry, 2014, 57, 42-55.	6.4	105
85	The road to avibactam: the first clinically useful non- \hat{l}^2 -lactam working somewhat like a \hat{l}^2 -lactam. Future Medicinal Chemistry, 2016, 8, 1063-1084.	2.3	102
86	How formaldehyde reacts with amino acids. Communications Chemistry, 2019, 2, .	4.5	102
87	The human oxygen sensing machinery and its manipulation. Chemical Society Reviews, 2008, 37, 1308.	38.1	100
88	Assay Platform for Clinically Relevant Metallo- \hat{l}^2 -lactamases. Journal of Medicinal Chemistry, 2013, 56, 6945-6953.	6.4	100
89	Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase. ACS Infectious Diseases, 2015, 1, 544-554.	3.8	100
90	Kinetic and crystallographic studies on deacetoxycephalosporin C synthase (DAOCS). Journal of Molecular Biology, 2001, 308, 937-948.	4.2	99

#	Article	IF	Citations
91	Optimal Translational Termination Requires C4 Lysyl Hydroxylation of eRF1. Molecular Cell, 2014, 53, 645-654.	9.7	99
92	Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2-oxoglutarate. Molecular BioSystems, 2005, 1, 321.	2.9	98
93	PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nature Cell Biology, 2016, 18, 803-813.	10.3	95
94	Cyclic Boronates Inhibit All Classes of \hat{l}^2 -Lactamases. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	94
95	Allosteric Inhibition of the SARSâ€CoVâ€⊋ Main Protease: Insights from Mass Spectrometry Based Assays**. Angewandte Chemie - International Edition, 2020, 59, 23544-23548.	13.8	92
96	Tuning the Transcriptional Response to Hypoxia by Inhibiting Hypoxia-inducible Factor (HIF) Prolyl and Asparaginyl Hydroxylases. Journal of Biological Chemistry, 2016, 291, 20661-20673.	3.4	91
97	The Selectivity and Inhibition of AlkB. Journal of Biological Chemistry, 2003, 278, 10157-10161.	3.4	90
98	Crystal Structure of Carbapenem Synthase (CarC). Journal of Biological Chemistry, 2003, 278, 20843-20850.	3.4	90
99	The Mechanism of ACV Synthetase. Chemical Reviews, 1997, 97, 2631-2650.	47.7	88
100	Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature, 2014, 510, 422-426.	27.8	87
101	The Chemical Biology of Human Metallo- \hat{l}^2 -Lactamase Fold Proteins. Trends in Biochemical Sciences, 2016, 41, 338-355.	7.5	87
102	Crystal Structure of the 2-Oxoglutarate- and Fe(II)-Dependent Lysyl Hydroxylase JMJD6. Journal of Molecular Biology, 2010, 401, 211-222.	4.2	85
103	X-ray absorption studies of the ferrous active site of isopenicillin N synthase and related model complexes. Biochemistry, 1993, 32, 6664-6673.	2.5	84
104	A miniaturized screen for inhibitors of Jumonji histone demethylases. Molecular BioSystems, 2010, 6, 357-364.	2.9	84
105	Structure–function relationships of human JmjC oxygenases—demethylases versus hydroxylases. Current Opinion in Structural Biology, 2016, 41, 62-72.	5.7	84
106	8-Substituted Pyrido[3,4- <i>d</i>)]pyrimidin-4(3 <i>H</i>)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 1388-1409.	6.4	83
107	Dynamic Combinatorial Chemistry Employing Boronic Acids/Boronate Esters Leads to Potent Oxygenase Inhibitors. Angewandte Chemie - International Edition, 2012, 51, 6672-6675.	13.8	82
108	Interaction of Avibactam with Class B Metallo-β-Lactamases. Antimicrobial Agents and Chemotherapy, 2016, 60, 5655-5662.	3.2	82

#	Article	IF	Citations
109	Structure of Human Phytanoyl-CoA 2-Hydroxylase Identifies Molecular Mechanisms of Refsum Disease*. Journal of Biological Chemistry, 2005, 280, 41101-41110.	3.4	78
110	Structural and Mechanistic Studies on \hat{I}^3 -Butyrobetaine Hydroxylase. Chemistry and Biology, 2010, 17, 1316-1324.	6.0	78
111	Inhibition of the histone lysine demethylase JMJD2A by ejection of structural Zn(ii). Chemical Communications, 2009, , 6376.	4.1	77
112	Inhibition of Histone Demethylases by 4 arboxyâ€⊋,2′â€Bipyridyl Compounds. ChemMedChem, 2011, 6, 7	5937264.	76
113	The oxygenase Jmjd6–a case study in conflicting assignments. Biochemical Journal, 2015, 468, 191-202.	3.7	76
114	Therapeutic Manipulation of the HIF Hydroxylases. Antioxidants and Redox Signaling, 2010, 12, 481-501.	5.4	75
115	Evidence for the slow reaction of hypoxiaâ€inducible factor prolyl hydroxylase 2 with oxygen. FEBS Journal, 2010, 277, 4089-4099.	4.7	75
116	Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates. Epigenetics, 2014, 9, 1596-1603.	2.7	74
117	Kinetic Rationale for Selectivity toward N- and C-terminal Oxygen-dependent Degradation Domain Substrates Mediated by a Loop Region of Hypoxia-Inducible Factor Prolyl Hydroxylases. Journal of Biological Chemistry, 2008, 283, 3808-3815.	3.4	72
118	Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochemical Journal, 2004, 383, 429-437.	3.7	71
119	Structural insights into how 5-hydroxymethylation influences transcription factor binding. Chemical Communications, 2014, 50, 1794-1796.	4.1	71
120	Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses. Journal of Clinical Investigation, 2017, 127, 3407-3420.	8.2	71
121	Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. ELife, 2019, 8, .	6.0	70
122	Proteins of the penicillin biosynthesis pathway. Current Opinion in Structural Biology, 1997, 7, 857-864.	5.7	69
123	Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Nature Communications, 2014, 5, 3423.	12.8	69
124	Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor. Journal of Biological Chemistry, 2015, 290, 19726-19742.	3.4	69
125	Will morphing boron-based inhibitors beat the \hat{l}^2 -lactamases?. Current Opinion in Chemical Biology, 2019, 50, 101-110.	6.1	69
126	Mechanistic Insights into the Inhibition of Serine Proteases by Monocyclic Lactamsâ€,‡. Biochemistry, 1999, 38, 7989-7998.	2.5	68

#	Article	IF	Citations
127	Factorâ€inhibiting hypoxiaâ€inducible factor (FIH) catalyses the postâ€translational hydroxylation of histidinyl residues within ankyrin repeat domains. FEBS Journal, 2011, 278, 1086-1097.	4.7	68
128	Analysis of Jmjd6 Cellular Localization and Testing for Its Involvement in Histone Demethylation. PLoS ONE, 2010, 5, e13769.	2.5	67
129	A Code for RanGDP Binding in Ankyrin Repeats Defines a Nuclear Import Pathway. Cell, 2014, 157, 1130-1145.	28.9	67
130	Targeting Protein–Protein Interactions in the HIF System. ChemMedChem, 2016, 11, 773-786.	3.2	67
131	Development of homogeneous luminescence assays for histone demethylase catalysis and binding. Analytical Biochemistry, 2010, 404, 86-93.	2.4	66
132	Analogues of dealanylalahopcin are inhibitors of human HIF prolyl hydroxylases. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1451-1454.	2.2	65
133	Hydroxylation of methylated CpG dinucleotides reverses stabilisation of DNA duplexes by cytosine 5-methylation. Chemical Communications, 2011, 47, 5325.	4.1	65
134	Linking of 2â€Oxoglutarate and Substrate Binding Sites Enables Potent and Highly Selective Inhibition of JmjC Histone Demethylases. Angewandte Chemie - International Edition, 2012, 51, 1631-1634.	13.8	64
135	The enzymology of clavam and carbapenem biosynthesis. Chemical Communications, 2005, , 4251.	4.1	63
136	Asparagine and Aspartate Hydroxylation of the Cytoskeletal Ankyrin Family Is Catalyzed by Factor-inhibiting Hypoxia-inducible Factor. Journal of Biological Chemistry, 2011, 286, 7648-7660.	3.4	63
137	Design and synthesis of potent and selective inhibitors of BRD7 and BRD9 bromodomains. MedChemComm, 2015, 6, 1381-1386.	3.4	63
138	NMR-filtered virtual screening leads to non-metal chelating metallo- \hat{l}^2 -lactamase inhibitors. Chemical Science, 2017, 8, 928-937.	7.4	63
139	Jumonji domain containing protein 6 (Jmjd6) modulates splicing and specifically interacts with arginine–serine-rich (RS) domains of SR- and SR-like proteins. Nucleic Acids Research, 2014, 42, 7833-7850.	14.5	61
140	Direct sulfonylation of anilines mediated by visible light. Chemical Science, 2018, 9, 629-633.	7.4	61
141	Human oxygen sensing may have origins in prokaryotic elongation factor Tu prolyl-hydroxylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13331-13336.	7.1	60
142	Reporter Ligand NMR Screening Method for 2-Oxoglutarate Oxygenase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 547-555.	6.4	59
143	Glucose Metabolism and Oxygen Availability Govern Reactivation of the Latent Human Retrovirus HTLV-1. Cell Chemical Biology, 2017, 24, 1377-1387.e3.	5.2	59
144	Expression, purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from tomato in Escherichia coli. Biochemical Journal, 1995, 307, 77-85.	3.7	58

#	Article	IF	CITATIONS
145	Evidence for a Stereoelectronic Effect in Human Oxygen Sensing. Angewandte Chemie - International Edition, 2009, 48, 1784-1787.	13.8	58
146	Monitoring Conformational Changes in the NDMâ€1 Metalloâ€Î²â€lactamase by ¹⁹ Fâ€NMR Spectroscopy. Angewandte Chemie - International Edition, 2014, 53, 3129-3133.	13.8	58
147	Binding of D- and L-captopril inhibitors to metallo- \hat{l}^2 -lactamase studied by polarizable molecular mechanics and quantum mechanics. Journal of Computational Chemistry, 2002, 23, 1281-1296.	3.3	57
148	Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins. Nature Chemical Biology, 2007, 3, 565-569.	8.0	57
149	Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain. PLoS ONE, 2015, 10, e0132004.	2.5	57
150	Biochemical characterization of New Delhi metallo- \hat{l}^2 -lactamase variants reveals differences in protein stability. Journal of Antimicrobial Chemotherapy, 2015, 70, 463-469.	3.0	57
151	Ironâ€Mediated Cleavage of CC Bonds in Vicinal Tricarbonyl Compounds in Water. Angewandte Chemie - International Edition, 2009, 48, 2796-2800.	13.8	56
152	Small-Molecule-Based Inhibition of Histone Demethylation in Cells Assessed by Quantitative Mass Spectrometry. Journal of Proteome Research, 2010, 9, 4082-4092.	3.7	56
153	Anaerobic Crystallisation of an Isopenicillin N Synthase . Fe(II) . Substrate Complex Demonstrated by X-Ray Studies. FEBS Journal, 1996, 242, 736-740.	0.2	55
154	Dynamic states of the DNA repair enzyme AlkB regulate product release. EMBO Reports, 2008, 9, 872-877.	4.5	55
155	Autocatalysed oxidative modifications to 2â€oxoglutarate dependent oxygenases. FEBS Journal, 2012, 279, 1563-1575.	4.7	55
156	Competitive Inhibitors of the CphA Metallo- \hat{l}^2 -Lactamase from Aeromonas hydrophila. Antimicrobial Agents and Chemotherapy, 2007, 51, 2136-2142.	3.2	54
157	Studies on the Reaction of Nitric Oxide with the Hypoxia-Inducible Factor Prolyl Hydroxylase Domain 2 (EGLN1). Journal of Molecular Biology, 2011, 410, 268-279.	4.2	54
158	On the Histone Lysine Methyltransferase Activity of Fungal Metabolite Chaetocin. Journal of Medicinal Chemistry, 2013, 56, 8616-8625.	6.4	54
159	On the pivotal role of PPARa in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. FASEB Journal, 2016, 30, 2684-2697.	0.5	54
160	The methyltransferase METTL9 mediates pervasive 1-methylhistidine modification in mammalian proteomes. Nature Communications, 2021, 12, 891.	12.8	54
161	Discovery of SARS-CoV-2 M ^{pro} peptide inhibitors from modelling substrate and ligand binding. Chemical Science, 2021, 12, 13686-13703.	7.4	54
162	Isolation of dihydroclavaminic acid, an intermediate in the biosynthesis of clavulanic acid. Tetrahedron, 1991, 47, 4089-4100.	1.9	53

#	Article	IF	Citations
163	The role of iron and 2-oxoglutarate oxygenases in signalling. Biochemical Society Transactions, 2003, 31, 510-515.	3.4	53
164	Dynamic Combinatorial Mass Spectrometry Leads to Metallo- \hat{l}^2 -lactamase Inhibitors. Journal of Medicinal Chemistry, 2008, 51, 684-688.	6.4	53
165	Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase. Biochemical Journal, 2013, 449, 491-496.	3.7	53
166	Structure of a specific acyl-enzyme complex formed between \hat{l}^2 -casomorphin-7 and porcine pancreatic elastase. Nature Structural Biology, 1997, 4, 456-462.	9.7	52
167	Product-substrate engineering by bacteria: Studies on clavaminate synthase, a trifunctional dioxygenase. Tetrahedron, 1999, 55, 10201-10220.	1.9	52
168	A fluorescence-based assay for 2-oxoglutarate-dependent oxygenases. Analytical Biochemistry, 2005, 336, 125-131.	2.4	52
169	Inhibition of the histone demethylase JMJD2E by 3-substituted pyridine 2,4-dicarboxylates. Organic and Biomolecular Chemistry, 2011, 9, 127-135.	2.8	52
170	Catalysis by the Non-Heme Iron(II) Histone Demethylase PHF8 Involves Iron Center Rearrangement and Conformational Modulation of Substrate Orientation. ACS Catalysis, 2020, 10, 1195-1209.	11.2	52
171	Monitoring the Activity of 2â€Oxoglutarate Dependent Histone Demethylases by NMR Spectroscopy: Direct Observation of Formaldehyde. ChemBioChem, 2010, 11, 506-510.	2.6	51
172	The 2â€Oxoglutarateâ€Dependent Oxygenase JMJD6 Catalyses Oxidation of Lysine Residues to give 5 <i>S</i> i>Si>3€Hydroxylysine Residues. ChemBioChem, 2011, 12, 531-534.	2.6	51
173	Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation. Nature Communications, 2015, 6, 7978.	12.8	51
174	Anion-exchange chromatography mass spectrometry provides extensive coverage of primary metabolic pathways revealing altered metabolism in IDH1 mutant cells. Communications Biology, 2020, 3, 247.	4.4	51
175	Identification of a pathogenic <i>FTO</i> mutation by next-generation sequencing in a newborn with growth retardation and developmental delay. Journal of Medical Genetics, 2016, 53, 200-207.	3.2	50
176	Asparagine \hat{l}^2 -hydroxylation stabilizes the ankyrin repeat domain fold. Molecular BioSystems, 2009, 5, 52-58.	2.9	49
177	Dynamic Combinatorial Mass Spectrometry Leads to Inhibitors of a 2-Oxoglutarate-Dependent Nucleic Acid Demethylase. Journal of Medicinal Chemistry, 2012, 55, 2173-2184.	6.4	49
178	Adipocyte Pseudohypoxia Suppresses Lipolysis and Facilitates Benign Adipose Tissue Expansion. Diabetes, 2015, 64, 733-745.	0.6	49
179	Cephalosporin biosynthesis: A branched pathway sensitive to an isotope effect. Tetrahedron, 1991, 47, 9881-9900.	1.9	48
180	Crystal structure of human persulfide dioxygenase: structural basis of ethylmalonic encephalopathy. Human Molecular Genetics, 2015, 24, 2458-2469.	2.9	48

#	Article	IF	Citations
181	Evidence That Two Enzyme-derived Histidine Ligands Are Sufficient for Iron Binding and Catalysis by Factor Inhibiting HIF (FIH). Journal of Biological Chemistry, 2008, 283, 25971-25978.	3.4	46
182	A Photoreactive Small-Molecule Probe for 2-Oxoglutarate Oxygenases. Chemistry and Biology, 2011, 18, 642-654.	6.0	46
183	Sudestada1, a <i>Drosophila</i> ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4025-4030.	7.1	46
184	Crystal structure of the 2-oxoglutarate- and Fe(II)-dependent lysyl hydroxylase JMJD6. Journal of Molecular Biology, 2010, 401, 211-22.	4.2	46
185	Carboxymethylproline Synthase (CarB), an Unusual Carbon-Carbon Bond-forming Enzyme of the Crotonase Superfamily Involved in Carbapenem Biosynthesis. Journal of Biological Chemistry, 2004, 279, 6730-6736.	3.4	45
186	Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4667-4672.	7.1	45
187	Molecular Basis of Class A \hat{l}^2 -Lactamase Inhibition by Relebactam. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	45
188	Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication. Science Advances, 2020, 6, eaax6328.	10.3	45
189	Hypoxia-dependent sequestration of an oxygen sensor by a widespread structural motif can shape the hypoxic response - a predictive kinetic model. BMC Systems Biology, 2010, 4, 139.	3.0	44
190	Structure-Guided Design of Cell Wall Biosynthesis Inhibitors That Overcome \hat{l}^2 -Lactam Resistance in <i>Staphylococcus aureus</i> (MRSA). ACS Chemical Biology, 2011, 6, 943-951.	3.4	44
191	Characterization of the Human SNM1A and SNM1B/Apollo DNA Repair Exonucleases. Journal of Biological Chemistry, 2012, 287, 26254-26267.	3.4	44
192	Glutamine-330 is not essential for activity in isopenicillin N synthase from Aspergillus nidulans. FEBS Letters, 1997, 405, 191-194.	2.8	43
193	Application of a Proteolysis/Mass Spectrometry Method for Investigating the Effects of Inhibitors on Hydroxylase Structure. Journal of Medicinal Chemistry, 2009, 52, 2799-2805.	6.4	43
194	Studies on Deacetoxycephalosporin C Synthase Support a Consensus Mechanism for 2-Oxoglutarate Dependent Oxygenases. Biochemistry, 2014, 53, 2483-2493.	2.5	43
195	A substrate analogue study on clavaminic acid synthase: possible clues to the biosynthetic origin of proclavamic acid. Journal of the Chemical Society Chemical Communications, 1993, , 500.	2.0	42
196	Investigating the contribution of the active site environment to the slow reaction of hypoxia-inducible factor prolyl hydroxylase domain 2 with oxygen. Biochemical Journal, 2014, 463, 363-372.	3.7	41
197	HIF prolyl hydroxylase inhibition prior to transient focal cerebral ischaemia is neuroprotective in mice. Journal of Neurochemistry, 2014, 131, 177-189.	3.9	41
198	In Silico Fragment-Based Design Identifies Subfamily B1 Metallo- \hat{l}^2 -lactamase Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 1255-1260.	6.4	40

#	Article	IF	CITATIONS
199	Role of Structural Dynamics in Selectivity and Mechanism of Non-heme Fe(II) and 2-Oxoglutarate-Dependent Oxygenases Involved in DNA Repair. ACS Central Science, 2020, 6, 795-814.	11.3	40
200	Structural Studies on the Reaction of Isopenicillin N Synthase with the Truncated Substrate Analogues δ-(l-α-aminoadipoyl)-l-cysteinyl-glycine and δ-(l-α-aminoadipoyl)-l-cysteinyl-d-alanineâ€,‡. Biochemistry, 2005, 44, 6619-6628.	2.5	39
201	The role of PHD2 mutations in the pathogenesis of erythrocytosis. Hypoxia (Auckland, N Z), 2014, 2, 71.	1.9	39
202	Structural/mechanistic insights into the efficacy of nonclassical βâ€lactamase inhibitors against extensively drug resistant <i>Stenotrophomonas maltophilia</i> clinical isolates. Molecular Microbiology, 2017, 106, 492-504.	2.5	39
203	Imitation of \hat{l}^2 -lactam binding enables broad-spectrum metallo- \hat{l}^2 -lactamase inhibitors. Nature Chemistry, 2022, 14, 15-24.	13.6	39
204	An approach to enzyme inhibition employing reversible boronate ester formation. MedChemComm, 2011, 2, 390.	3.4	38
205	The Ugi four-component reaction enables expedient synthesis and comparison of photoaffinity probes. Chemical Science, 2013, 4, 4115.	7.4	38
206	Comparison of Verona Integron-Borne Metallo- \hat{l}^2 -Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles. Antimicrobial Agents and Chemotherapy, 2016, 60, 1377-1384.	3.2	38
207	NMR analyses on (i>Nhydroxymethylated nucleobases â€" implications for formaldehyde toxicity and nucleic acid demethylases. Organic and Biomolecular Chemistry, 2018, 16, 4021-4032.	2.8	38
208	ORF17 from the Clavulanic Acid Biosynthesis Gene Cluster Catalyzes the ATP-dependent Formation of N-Glycyl-clavaminic Acid. Journal of Biological Chemistry, 2006, 281, 279-287.	3.4	37
209	Synthesis and Evaluation of 3-(Dihydroxyboryl)benzoic Acids as <scp>d</scp> , <scp>d</scp> -Carboxypeptidase R39 Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 6097-6106.	6.4	37
210	Observations on the Deprotection of Pinanediol and Pinacol Boronate Esters via Fluorinated Intermediates. Journal of Organic Chemistry, 2010, 75, 468-471.	3.2	37
211	JMJD5 is a human arginyl C-3 hydroxylase. Nature Communications, 2018, 9, 1180.	12.8	37
212	Asparaginyl \hat{l}^2 -Hydroxylation of Proteins Containing Ankyrin Repeat Domains Influences Their Stability and Function. Journal of Molecular Biology, 2009, 392, 994-1006.	4.2	36
213	The polyserine domain of the lysyl-5 hydroxylase Jmjd6 mediates subnuclear localization. Biochemical Journal, 2013, 453, 357-370.	3.7	36
214	Studying the active-site loop movement of the São Paolo metallo- \hat{l}^2 -lactamase-1. Chemical Science, 2015, 6, 956-963.	7.4	36
215	Proline-Hydroxylated Hypoxia-Inducible Factor $1\hat{l}\pm$ (HIF- $1\hat{l}\pm$) Upregulation in Human Tumours. PLoS ONE, 2014, 9, e88955.	2.5	36
216	Characterization of the SARS-CoV-2 ExoN (nsp14ExoN–nsp10) complex: implications for its role in viral genome stability and inhibitor identification. Nucleic Acids Research, 2022, 50, 1484-1500.	14.5	36

#	Article	IF	Citations
217	Crystal structure of the PHF8 Jumonji domain, an <i>N</i> ^ε â€methyl lysine demethylase. FEBS Letters, 2010, 584, 825-830.	2.8	35
218	Rationally engineered flavinâ€dependent oxidase reveals steric control of dioxygen reduction. FEBS Journal, 2015, 282, 3060-3074.	4.7	35
219	Betti reaction enables efficient synthesis of 8-hydroxyquinoline inhibitors of 2-oxoglutarate oxygenases. Chemical Communications, 2015, 51, 15458-15461.	4.1	35
220	Isocitrate dehydrogenase variants in cancer — Cellular consequences and therapeutic opportunities. Current Opinion in Chemical Biology, 2020, 57, 122-134.	6.1	35
221	Mass spectrometry reveals potential of \hat{l}^2 -lactams as SARS-CoV-2 M ^{pro} inhibitors. Chemical Communications, 2021, 57, 1430-1433.	4.1	35
222	Structural studies on the reaction of isopenicillin N synthase with the substrate analogue delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-alpha-aminobutyrate. Biochemical Journal, 2003, 372, 687-693.	3.7	34
223	Aspartate/asparagine- \hat{l}^2 -hydroxylase crystal structures reveal an unexpected epidermal growth factor-like domain substrate disulfide pattern. Nature Communications, 2019, 10, 4910.	12.8	34
224	Profiling interactions of vaborbactam with metallo- \hat{l}^2 -lactamases. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1981-1984.	2.2	34
225	Structure-Based in Silico Screening Identifies a Potent Ebolavirus Inhibitor from a Traditional Chinese Medicine Library. Journal of Medicinal Chemistry, 2019, 62, 2928-2937.	6.4	34
226	Hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors induce autophagy and have a protective effect in an in-vitro ischaemia model. Scientific Reports, 2020, 10, 1597.	3.3	34
227	An on-demand, drop-on-drop method for studying enzyme catalysis by serial crystallography. Nature Communications, 2021, 12, 4461.	12.8	34
228	Inhibition of the HIF1 \hat{l} ±-p300 interaction by quinone- and indandione-mediated ejection of structural Zn(II). European Journal of Medicinal Chemistry, 2015, 94, 509-516.	5.5	33
229	KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability. Journal of Cell Biology, 2017, 216, 999-1013.	5.2	33
230	New Delhi Metallo- \hat{l}^2 -Lactamase 1 Catalyzes Avibactam and Aztreonam Hydrolysis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	33
231	Roles of 2-oxoglutarate oxygenases and isopenicillin N synthase in \hat{I}^2 -lactam biosynthesis. Natural Product Reports, 2018, 35, 735-756.	10.3	33
232	Histone H2A monoubiquitylation and p38-MAPKs regulate immediate-early gene-like reactivation of latent retrovirus HTLV-1. JCl Insight, 2018, 3, .	5.0	33
233	Pharmacological Inhibition of FTO. PLoS ONE, 2015, 10, e0121829.	2.5	33
234	Controlling the Substrate Selectivity of Deacetoxycephalosporin/deacetylcephalosporin C Synthase. Journal of Biological Chemistry, 2004, 279, 15420-15426.	3.4	32

#	Article	IF	CITATIONS
235	Mechanism for Cyclization Reaction by Clavaminic Acid Synthase. Insights from Modeling Studiesâ€. Biochemistry, 2007, 46, 3682-3691.	2.5	32
236	Clavulanic Acid Dehydrogenase: Structural and Biochemical Analysis of the Final Step in the Biosynthesis of the β-Lactamase Inhibitor Clavulanic Acidâ€,‡. Biochemistry, 2007, 46, 1523-1533.	2.5	32
237	Studies on the reaction of glutathione and formaldehyde using NMR. Organic and Biomolecular Chemistry, 2010, 8, 4915.	2.8	32
238	Crotonase Catalysis Enables Flexible Production of Functionalized Prolines and Carbapenams. Journal of the American Chemical Society, 2012, 134, 471-479.	13.7	32
239	Is JmjC Oxygenase Catalysis Limited to Demethylation?. Angewandte Chemie - International Edition, 2013, 52, 7709-7713.	13.8	32
240	Optimisation of a triazolopyridine based histone demethylase inhibitor yields a potent and selective KDM2A (FBXL11) inhibitor. MedChemComm, 2014, 5, 1879-1886.	3.4	32
241	The structures of the SNM1A and SNM1B/Apollo nuclease domains reveal a potential basis for their distinct DNA processing activities. Nucleic Acids Research, 2015, 43, 11047-11060.	14.5	32
242	Structure of the Ribosomal Oxygenase OGFOD1 Provides Insights into the Regio- and Stereoselectivity of Prolyl Hydroxylases. Structure, 2015, 23, 639-652.	3.3	32
243	Factor inhibiting hypoxia-inducible factor (FIH) and other asparaginyl hydroxylases. Biochemical Society Transactions, 2004, 32, 943-945.	3.4	31
244	Structural and Mechanistic Studies on Carboxymethylproline Synthase (CarB), a Unique Member of the Crotonase Superfamily Catalyzing the First Step in Carbapenem Biosynthesis*. Journal of Biological Chemistry, 2005, 280, 34956-34965.	3.4	31
245	Câ^'H Cyanation of 6â€Ring Nâ€Containing Heteroaromatics. Chemistry - A European Journal, 2017, 23, 14733-14737.	3.3	31
246	The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases. Nature Chemical Biology, 2018, 14, 688-695.	8.0	31
247	Pseudohypoxic HIF pathway activation dysregulates collagen structure-function in human lung fibrosis. ELife, 2022, 11, .	6.0	31
248	Substrate Selectivity Analyses of Factor Inhibiting Hypoxiaâ€Inducible Factor. Angewandte Chemie - International Edition, 2013, 52, 1700-1704.	13.8	30
249	Crystal structures of VIMâ€1 complexes explain active site heterogeneity in VIMâ€class metalloâ€Î²â€lactamases. FEBS Journal, 2019, 286, 169-183.	4.7	30
250	Introduction to Structural Studies on 2-Oxoglutarate-Dependent Oxygenases and Related Enzymes. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 59-94.	0.8	30
251	Incorporation of oxygen into the succinate co-product of iron(II) and 2-oxoglutarate dependent oxygenases from bacteria, plants and humans. FEBS Letters, 2005, 579, 5170-5174.	2.8	29
252	Evidence that Thienamycin Biosynthesis Proceeds via Câ€5 Epimerization: ThnE Catalyzes the Formation of (2 <i>S</i> ,5 <i>S</i>)â€ <i>trans</i> êCarboxymethylproline. ChemBioChem, 2009, 10, 246-250.	2.6	29

#	Article	IF	Citations
253	Stereoselective C–C bond formation catalysed by engineered carboxymethylproline synthases. Nature Chemistry, 2011, 3, 365-371.	13.6	29
254	Crystallographic analyses of isoquinoline complexes reveal a new mode of metallo-β-lactamase inhibition. Chemical Communications, 2017, 53, 5806-5809.	4.1	29
255	Studies on the Interaction of the Histone Demethylase KDM5B with Tricarboxylic Acid Cycle Intermediates. Journal of Molecular Biology, 2017, 429, 2895-2906.	4.2	29
256	Investigating <scp>d < /scp>-lysine stereochemistry for epigenetic methylation, demethylation and recognition. Chemical Communications, 2017, 53, 13264-13267.</scp>	4.1	29
257	2-Oxoglutarate regulates binding of hydroxylated hypoxia-inducible factor to prolyl hydroxylase domain 2. Chemical Communications, 2018, 54, 3130-3133.	4.1	29
258	In vitro efficacy of imipenem-relebactam and cefepime-AAI101 against a global collection of ESBL-positive and carbapenemase-producing Enterobacteriaceae. International Journal of Antimicrobial Agents, 2020, 56, 105925.	2.5	29
259	The Unusual Bifunctional Catalysis of Epimerization and Desaturation by Carbapenem Synthase. Journal of the American Chemical Society, 2004, 126, 9932-9933.	13.7	29
260	Isopenicilin N synthase: a new mode of reactivity. Tetrahedron, 1992, 48, 9085-9100.	1.9	28
261	Using NMR Solvent Water Relaxation to Investigate Metalloenzymeâ^'Ligand Binding Interactions. Journal of Medicinal Chemistry, 2010, 53, 867-875.	6.4	28
262	Structure Guided Development of Potent Reversibly Binding Penicillin Binding Protein Inhibitors. ACS Medicinal Chemistry Letters, 2011, 2, 219-223.	2.8	28
263	Cephalosporins inhibit human metallo \hat{l}^2 -lactamase fold DNA repair nucleases SNM1A and SNM1B/apollo. Chemical Communications, 2016, 52, 6727-6730.	4.1	28
264	Mapping the Hydrophobic Substrate Binding Site of Phenylalanine Ammonia-Lyase from <i>Petroselinum crispum </i> ACS Catalysis, 2019, 9, 8825-8834.	11.2	28
265	Studies on the inhibition of AmpC and other \hat{l}^2 -lactamases by cyclic boronates. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 742-748.	2.4	28
266	\hat{l}^3 -Lactam formation from tripeptides with isopenicillin N synthase. Journal of the Chemical Society Chemical Communications, 1988, , 1128-1130.	2.0	27
267	â€~Chemical co-substrate rescue' of phytanoyl-CoA 2-hydroxylase mutants causing Refsum's Disease. Chemical Communications, 2001, , 972-973.	4.1	27
268	Development and Application of a Fluorideâ€Detectionâ€Based Fluorescence Assay for γâ€Butyrobetaine Hydroxylase. ChemBioChem, 2012, 13, 1559-1563.	2.6	27
269	A New Mechanism for βâ€Lactamases: Class D Enzymes Degrade 1βâ€Methyl Carbapenems through Lactone Formation. Angewandte Chemie - International Edition, 2018, 57, 1282-1285.	13.8	27
270	Mechanistic Insights into \hat{l}^2 -Lactamase-Catalysed Carbapenem Degradation Through Product Characterisation. Scientific Reports, 2019, 9, 13608.	3.3	27

#	Article	IF	CITATIONS
271	Nonâ€Hydrolytic βâ€Lactam Antibiotic Fragmentation by <scp>l,d</scp> â€Transpeptidases and Serine βâ€Lactamase Cysteine Variants. Angewandte Chemie - International Edition, 2019, 58, 1990-1994.	13.8	27
272	Natural variants modify Klebsiella pneumoniae carbapenemase (KPC) acyl–enzyme conformational dynamics to extend antibiotic resistance. Journal of Biological Chemistry, 2021, 296, 100126.	3.4	27
273	2-Oxoglutarate oxygenases are inhibited by a range of transition metals. Metallomics, 2010, 2, 397.	2.4	26
274	Investigations on small molecule inhibitors targeting the histone H3K4 tri-methyllysine binding PHD-finger of JmjC histone demethylases. Bioorganic and Medicinal Chemistry, 2018, 26, 2984-2991.	3.0	26
275	HIF hydroxylase inhibitors decrease cellular oxygen consumption depending on their selectivity. FASEB Journal, 2020, 34, 2344-2358.	0.5	26
276	Mechanisms of substrate recognition and <i>N</i> 6-methyladenosine demethylation revealed by crystal structures of ALKBH5–RNA complexes. Nucleic Acids Research, 2022, 50, 4148-4160.	14.5	26
277	Epimerization and desaturation by carbapenem synthase (CarC). A hybrid DFT study. Journal of Computational Chemistry, 2006, 27, 740-748.	3.3	25
278	ESIâ€MS Studies on Prolyl Hydroxylase Domainâ€2 Reveal a New Metal Binding Site. ChemMedChem, 2008, 3, 569-572.	3.2	25
279	A boronic-acid-based probe for fluorescence polarization assays with penicillin binding proteins and β-lactamases. Analytical Biochemistry, 2012, 420, 41-47.	2.4	25
280	A comparison of 2â€hydroxyglutarate detection at 3 and 7ÂT with longâ€TE semiâ€LASER. NMR in Biomedicine, 2018, 31, e3886.	2.8	25
281	Cyclobutanone Mimics of Intermediates in Metalloâ€Î²â€Lactamase Catalysis. Chemistry - A European Journal, 2018, 24, 5734-5737.	3.3	25
282	Targeting the Mycobacterium tuberculosis transpeptidase LdtMt2 with cysteine-reactive inhibitors including ebselen. Chemical Communications, 2019, 55, 10214-10217.	4.1	25
283	Biochemical and structural investigations clarify the substrate selectivity of the 2-oxoglutarate oxygenase JMJD6. Journal of Biological Chemistry, 2019, 294, 11637-11652.	3.4	25
284	Cephalosporin C biosynthesis; a branched pathway sensitive to a kinetic isotope effect. Journal of the Chemical Society Chemical Communications, 1987, , 1651.	2.0	24
285	Biosynthesis of Carbapenem Antibiotics: New Carbapenam Substrates for Carbapenem Synthase (CarC). ChemBioChem, 2004, 5, 879-882.	2.6	24
286	Studies on ternary metallo- \hat{l}^2 lactamase-inhibitor complexes using electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2006, 17, 1000-1004.	2.8	24
287	î ³ -Butyrobetaine hydroxylase catalyses a Stevens type rearrangement. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4975-4978.	2.2	24
288	Cation–π Interactions Contribute to Substrate Recognition in γâ€Butyrobetaine Hydroxylase Catalysis. Chemistry - A European Journal, 2016, 22, 1270-1276.	3.3	24

#	Article	IF	CITATIONS
289	Non-competitive cyclic peptides for targeting enzyme–substrate complexes. Chemical Science, 2018, 9, 4569-4578.	7.4	24
290	Bispecific repurposed medicines targeting the viral and immunological arms of COVID-19. Scientific Reports, 2021, 11, 13208.	3. 3	24
291	Studies on phytanoyl-CoA 2-hydroxylase and synthesis of phytanoyl-Coenzyme A. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2545-2548.	2.2	23
292	Carboxymethylproline synthase catalysed syntheses of functionalised N-heterocycles. Chemical Communications, 2010, 46, 1413.	4.1	23
293	Binding of (5 <i>S</i>)-Penicilloic Acid to Penicillin Binding Protein 3. ACS Chemical Biology, 2013, 8, 2112-2116.	3.4	23
294	Modulating carnitine levels by targeting its biosynthesis – selective inhibition of γ-butyrobetaine hydroxylase. Chemical Science, 2014, 5, 1765-1771.	7.4	23
295	Investigations on recyclisation and hydrolysis in avibactam mediated serine \hat{l}^2 -lactamase inhibition. Organic and Biomolecular Chemistry, 2016, 14, 4116-4128.	2.8	23
296	MeLAD: an integrated resource for metalloenzyme-ligand associations. Bioinformatics, 2020, 36, 904-909.	4.1	23
297	The SNM1A DNA repair nuclease. DNA Repair, 2020, 95, 102941.	2.8	23
298	Catalysis by the JmjC histone demethylase KDM4A integrates substrate dynamics, correlated motions and molecular orbital control. Chemical Science, 2020, 11, 9950-9961.	7.4	23
299	JMJD6 Is a Druggable Oxygenase That Regulates AR-V7 Expression in Prostate Cancer. Cancer Research, 2022, 81, 1087-1100.	0.9	23
300	X-ray free-electron laser studies reveal correlated motion during isopenicillin $\langle i \rangle N \langle i \rangle$ synthase catalysis. Science Advances, 2021, 7, .	10.3	23
301	Isolation of an intermediate in clavulanic acid biosynthesis. Journal of the Chemical Society Chemical Communications, 1990, , 617.	2.0	22
302	Thioester Hydrolysis and CïŁ¿C Bond Formation by Carboxymethylproline Synthase from the Crotonase Superfamily. Angewandte Chemie - International Edition, 2008, 47, 9322-9325.	13.8	22
303	2-Oxoglutarate analogue inhibitors of prolyl hydroxylase domain 2. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6192-6195.	2.2	22
304	Structural basis for binding of cyclic 2-oxoglutarate analogues to factor-inhibiting hypoxia-inducible factor. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6125-6128.	2.2	22
305	Structural and Biochemical Characterization of Rm3, a Subclass B3 Metallo- \hat{l}^2 -Lactamase Identified from a Functional Metagenomic Study. Antimicrobial Agents and Chemotherapy, 2016, 60, 5828-5840.	3.2	22
306	The Clinically Used Iron Chelator Deferasirox Is an Inhibitor of Epigenetic JumonjiC Domain-Containing Histone Demethylases. ACS Chemical Biology, 2019, 14, 1737-1750.	3.4	22

#	Article	IF	Citations
307	A Noninvasive Comparison Study between Human Gliomas with IDH1 and IDH2 Mutations by MR Spectroscopy. Metabolites, 2019, 9, 35.	2.9	22
308	Structural Basis of Prolyl Hydroxylase Domain Inhibition by Molidustat. ChemMedChem, 2021, 16, 2082-2088.	3.2	22
309	Improved Localization for 2-Hydroxyglutarate Detection at 3 T Using Long-TE Semi-LASER. Tomography, 2016, 2, 94-105.	1.8	22
310	Penicillin Derivatives Inhibit the SARS-CoV-2 Main Protease by Reaction with Its Nucleophilic Cysteine. Journal of Medicinal Chemistry, 2022, 65, 7682-7696.	6.4	22
311	Chromophoreâ€Linked Substrate (CLS405): Probing Metalloâ€Î²â€Lactamase Activity and Inhibition. ChemMedChem, 2013, 8, 1923-1929.	3.2	21
312	Dual-action inhibitors of HIF prolyl hydroxylases that induce binding of a second iron ion. Organic and Biomolecular Chemistry, 2013, 11, 732-745.	2.8	21
313	Expanding the yeast protein arginine methylome. Proteomics, 2015, 15, 3232-3243.	2.2	21
314	Deciphering Functions of Intracellular Formaldehyde: Linking Cancer and Aldehyde Metabolism. Biochemistry, 2018, 57, 904-906.	2.5	21
315	Rh(<scp>iii</scp>)-Catalyzed directed C–H carbenoid coupling reveals aromatic bisphosphonates inhibiting metallo- and Serine-β-lactamases. Organic Chemistry Frontiers, 2018, 5, 1288-1292.	4.5	21
316	Preclinical Evaluation of Discorhabdins in Antiangiogenic and Antitumor Models. Marine Drugs, 2018, 16, 241.	4.6	21
317	Structureâ€Activity Relationship and Crystallographic Studies on 4â€Hydroxypyrimidine HIF Prolyl Hydroxylase Domain Inhibitors. ChemMedChem, 2020, 15, 270-273.	3.2	21
318	Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Reports Medicine, 2021, 2, 100469.	6.5	21
319	Active Site Mutations of Recombinant Deacetoxycephalosporin C Synthase. Biochemical and Biophysical Research Communications, 2002, 292, 66-70.	2.1	20
320	Comparison of the substrate selectivity and biochemical properties of human and bacterial \hat{I}^3 -butyrobetaine hydroxylase. Organic and Biomolecular Chemistry, 2014, 12, 6354-6358.	2.8	20
321	Use of ferrous iron by metallo- \hat{l}^2 -lactamases. Journal of Inorganic Biochemistry, 2016, 163, 185-193.	3.5	20
322	¹⁹ Fâ€NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metalloâ€Î²â€Lactamase. Angewandte Chemie - International Edition, 2017, 56, 3862-3866.	13.8	20
323	Conformational Dynamics Underlies Different Functions of Human KDM7 Histone Demethylases. Chemistry - A European Journal, 2019, 25, 5422-5426.	3.3	20
324	Bicyclic Boronates as Potent Inhibitors of AmpC, the Class C \hat{l}^2 -Lactamase from Escherichia coli. Biomolecules, 2020, 10, 899.	4.0	20

#	Article	IF	Citations
325	Structures of $\langle i \rangle$ Mycobacterium tuberculosis $\langle i \rangle$ Penicillin-Binding Protein 3 in Complex with Five $\langle i \rangle$ $\hat{I}^2 \langle i \rangle$ -Lactam Antibiotics Reveal Mechanism of Inactivation. Molecular Pharmacology, 2020, 97, 287-294.	2.3	20
326	Cyclic boronates as versatile scaffolds for KPC-2 \hat{l}^2 -lactamase inhibition. RSC Medicinal Chemistry, 2020, 11, 491-496.	3.9	20
327	Structural and mechanistic insights into the Artemis endonuclease and strategies for its inhibition. Nucleic Acids Research, 2021, 49, 9310-9326.	14.5	20
328	The ring expansion of penama to cephams: a possible biomimetic process. Tetrahedron, 1988, 44, 5953-5957.	1.9	19
329	Use of mass spectrometry to probe the nucleophilicity of cysteinyl residues of prolyl hydroxylase domain 2. Analytical Biochemistry, 2009, 393, 215-221.	2.4	19
330	Structure and Mechanism of a Viral Collagen Prolyl Hydroxylase. Biochemistry, 2015, 54, 6093-6105.	2.5	19
331	<code>¹³C-Carbamylation</code> as a mechanistic probe for the inhibition of class D \hat{l}^2 -lactamases by avibactam and halide ions. Organic and Biomolecular Chemistry, 2017, 15, 6024-6032.	2.8	19
332	Mechanism of Molecular Oxygen Diffusion in a Hypoxia-Sensing Prolyl Hydroxylase Using Multiscale Simulation. Journal of the American Chemical Society, 2020, 142, 2253-2263.	13.7	19
333	Complement C1q is hydroxylated by collagen prolyl 4 hydroxylase and is sensitive to off-target inhibition by prolyl hydroxylase domain inhibitors that stabilize hypoxia-inducible factor. Kidney International, 2017, 92, 900-908.	5.2	18
334	Inhibitors of both the <i>N</i> -methyl lysyl- and arginyl-demethylase activities of the JmjC oxygenases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170071.	4.0	18
335	Aspartate/asparagine- \hat{l}^2 -hydroxylase: a high-throughput mass spectrometric assay for discovery of small molecule inhibitors. Scientific Reports, 2020, 10, 8650.	3.3	18
336	What Is the Catalytic Mechanism of Enzymatic Histone Nâ€Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?. Chemistry - A European Journal, 2021, 27, 11827-11836.	3.3	18
337	Kinetic parameters of human aspartate/asparagine–β-hydroxylase suggest that it has a possible function in oxygen sensing. Journal of Biological Chemistry, 2020, 295, 7826-7838.	3.4	18
338	Reversible acylation of elastase by \hat{I}^3 -lactam analogues of \hat{I}^2 -lactam inhibitors. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2973-2978.	2.2	17
339	Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo- \hat{l}^2 -lactamases. Bioorganic and Medicinal Chemistry, 2018, 26, 2928-2936.	3.0	17
340	Structural Basis of Metallo- \hat{l}^2 -lactamase Inhibition by $\langle i \rangle N \langle i \rangle$ -Sulfamoylpyrrole-2-carboxylates. ACS Infectious Diseases, 2021, 7, 1809-1817.	3.8	17
341	Inhibition of the Oxygen-Sensing Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-Inducible Factor: A Potential Hypoxia Response Modulating Strategy. Journal of Medicinal Chemistry, 2021, 64, 7189-7209.	6.4	17
342	Crystallization and preliminary Xâ€ray diffraction studies on recombinant isopenicillin N synthase from <i>Aspergillus nidulans</i> . Protein Science, 1995, 4, 1007-1009.	7.6	16

#	Article	IF	Citations
343	Chemical Basis for the Selectivity of the von Hippel Lindau Tumor Suppressor pVHL for Prolyl-Hydroxylated HIF-1α. Biochemistry, 2010, 49, 6936-6944.	2.5	16
344	The broad spectrum 2-oxoglutarate oxygenase inhibitor N-oxalylglycine is present in rhubarb and spinach leaves. Phytochemistry, 2015, 117, 456-461.	2.9	16
345	Sideromimic Modification of Lactivicin Dramatically Increases Potency against Extensively Drug-Resistant Stenotrophomonas maltophilia Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2016, 60, 4170-4175.	3.2	16
346	Antibiotics as food for bacteria. Nature Microbiology, 2018, 3, 752-753.	13.3	16
347	An essential role for dNTP homeostasis following CDK-induced replication stress. Journal of Cell Science, 2019, 132, .	2.0	16
348	Conformational flexibility influences structure–function relationships in nucleic acid <i>N</i> -methyl demethylases. Organic and Biomolecular Chemistry, 2019, 17, 2223-2231.	2.8	16
349	5,5-Fused thiophene \hat{I}^3 -lactams as templates for serine protease inhibition. Chemical Communications, 2002, , 1274-1275.	4.1	15
350	Self-hydroxylation of the splicing factor lysyl hydroxylase, JMJD6. MedChemComm, 2012, 3, 80-85.	3.4	15
351	Assay for drug discovery: Synthesis and testing of nitrocefin analogues for use as \hat{l}^2 -lactamase substrates. Analytical Biochemistry, 2015, 486, 75-77.	2.4	15
352	Analysis of JmjC Demethylase-Catalyzed Demethylation Using Geometrically-Constrained Lysine Analogues. ACS Chemical Biology, 2016, 11, 755-762.	3.4	15
353	Broad Spectrum \hat{I}^2 -Lactamase Inhibition by a Thioether Substituted Bicyclic Boronate. ACS Infectious Diseases, 2020, 6, 1398-1404.	3.8	15
354	High-Throughput Crystallography Reveals Boron-Containing Inhibitors of a Penicillin-Binding Protein with Di- and Tricovalent Binding Modes. Journal of Medicinal Chemistry, 2021, 64, 11379-11394.	6.4	15
355	Design and enantioselective synthesis of 3-(\hat{l} ±-acrylic acid) benzoxaboroles to combat carbapenemase resistance. Chemical Communications, 2021, 57, 7709-7712.	4.1	15
356	Terminally Truncated Isopenicillin N Synthase Generates a Dithioester Product: Evidence for a Thioaldehyde Intermediate during Catalysis and a New Mode of Reaction for Nonâ€Heme Iron Oxidases. Chemistry - A European Journal, 2017, 23, 12815-12824.	3.3	14
357	Crotonases: Nature's Exceedingly Convertible Catalysts. ACS Catalysis, 2017, 7, 6587-6599.	11.2	14
358	¹⁹ Fâ€NMR Monitoring of Reversible Protein Postâ€Translational Modifications: Classâ€D βâ€Lactamase Carbamylation and Inhibition. Chemistry - A European Journal, 2019, 25, 11837-11841.	3.3	14
359	Faropenem reacts with serine and metallo- \hat{l}^2 -lactamases to give multiple products. European Journal of Medicinal Chemistry, 2021, 215, 113257.	5 . 5	14
360	Biosynthesis of histone messenger RNA employs a specific 3' end endonuclease. ELife, 2018, 7, .	6.0	14

#	Article	IF	CITATIONS
361	Structureâ€Activity Studies Reveal Scope for Optimisation of Ebselenâ€Type Inhibition of SARSâ€CoVâ€2 Main Protease. ChemMedChem, 2022, 17, e202100582.	3.2	14
362	Mass Spectrometric Assays Reveal Discrepancies in Inhibition Profiles for the SARSâ€CoVâ€2 Papainâ€Like Protease. ChemMedChem, 2022, 17, .	3.2	14
363	Chemo-enzymatic synthesis of bicyclic \hat{l}^3 -lactams using clavaminic acid synthase. Tetrahedron, 1997, 53, 7011-7020.	1.9	13
364	Synthesis and Biological Evaluation of Tripartin, a Putative KDM4 Natural Product Inhibitor, and 1â€Dichloromethylindenâ€1â€ol Analogues. ChemMedChem, 2018, 13, 1949-1956.	3.2	13
365	A Fluorescenceâ€Based Assay for Screening Î²â€Łactams Targeting the <i>Mycobacterium tuberculosis</i> Transpeptidase Ldt _{Mt2} . ChemBioChem, 2020, 21, 368-372.	2.6	13
366	Studies on the selectivity of proline hydroxylases reveal new substrates including bicycles. Bioorganic Chemistry, 2020, 94, 103386.	4.1	13
367	Formation of a novel bicyclic \hat{I}^3 -lactam with isopenicillin N synthase. Journal of the Chemical Society Chemical Communications, 1989, , 970-972.	2.0	12
368	Born to sense: biophysical analyses of the oxygen sensing prolyl hydroxylase from the simplest animal Trichoplax adhaerens . Hypoxia (Auckland, N Z), 2018, Volume 6, 57-71.	1.9	12
369	Analysis of \hat{l}^2 -lactone formation by clinically observed carbapenemases informs on a novel antibiotic resistance mechanism. Journal of Biological Chemistry, 2020, 295, 16604-16613.	3.4	12
370	Hypoxia and hypoxia mimetics differentially modulate histone post-translational modifications. Epigenetics, 2021, 16, 14-27.	2.7	12
371	Anaerobic fixed-target serial crystallography. IUCrJ, 2020, 7, 901-912.	2.2	12
372	Roles of metal ions in the selective inhibition of oncogenic variants of isocitrate dehydrogenase 1. Communications Biology, 2021, 4, 1243.	4.4	12
373	Mass Spectrometric Studies on the Inhibition of TEM-2.BETALactamase by Clavulanic Acid Derivatives Journal of Antibiotics, 1997, 50, 184-185.	2.0	11
374	Kinetic and crystallographic analysis of complexes formed between elastase and peptides from \hat{l}^2 -casein. FEBS Journal, 2001, 268, 2969-2974.	0.2	11
375	Conformational studies on substituted $\hat{l}\mu$ -caprolactams by X-ray crystallography and NMR spectroscopy. New Journal of Chemistry, 2014, 38, 5905-5917.	2.8	11
376	Ejection of structural zinc leads to inhibition of \hat{I}^3 -butyrobetaine hydroxylase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4954-4957.	2,2	11
377	Human carnitine biosynthesis proceeds via (2S,3S)-3-hydroxy-N ^{\hat{l}_{μ}} -trimethyllysine. Chemical Communications, 2017, 53, 440-442.	4.1	11
378	Pseudomonas expression of an oxygen sensing prolyl hydroxylase homologue regulates neutrophil host responses in vitro and in vivo. Wellcome Open Research, 2017, 2, 104.	1.8	11

#	Article	IF	CITATIONS
379	Stereoselective preparation of lipidated carboxymethyl-proline/pipecolic acid derivatives via coupling of engineered crotonases with an alkylmalonyl-CoA synthetase. Organic and Biomolecular Chemistry, 2013, 11, 8191.	2.8	10
380	Studies on the Glutathione-Dependent Formaldehyde-Activating Enzyme from Paracoccus denitrificans. PLoS ONE, 2015, 10, e0145085.	2.5	10
381	Mechanistic and structural studies of <scp>KDM</scp> â€catalysed demethylation of histone 1 isotype 4 at lysine 26. FEBS Letters, 2018, 592, 3264-3273.	2.8	10
382	Allosteric Inhibition of the SARSâ€CoVâ€2 Main Protease: Insights from Mass Spectrometry Based Assays**. Angewandte Chemie, 2020, 132, 23750-23754.	2.0	10
383	Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. Journal of Biological Chemistry, 2020, 295, 16545-16561.	3.4	10
384	Synthesis of Novel Pyridineâ€Carboxylates as Smallâ€Molecule Inhibitors of Human Aspartate/Asparagineâ€Î²â€Hydroxylase. ChemMedChem, 2020, 15, 1139-1149.	3.2	10
385	Structural Investigations of the Inhibition of Escherichia coli AmpC \hat{l}^2 -Lactamase by Diazabicyclooctanes. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	10
386	Human Oxygenase Variants Employing a Single Protein Fe ^{II} Ligand Are Catalytically Active. Angewandte Chemie - International Edition, 2021, 60, 14657-14663.	13.8	10
387	Exploiting Electrode Nanoconfinement to Investigate the Catalytic Properties of Isocitrate Dehydrogenase (IDH1) and a Cancer-Associated Variant. Journal of Physical Chemistry Letters, 2021, 12, 6095-6101.	4.6	10
388	2-Oxoglutarate derivatives can selectively enhance or inhibit the activity of human oxygenases. Nature Communications, 2021, 12, 6478.	12.8	10
389	Isocitrate dehydrogenase gene variants in cancer and their clinical significance. Biochemical Society Transactions, 2021, 49, 2561-2572.	3.4	10
390	The potential of 2-oxoglutarate oxygenases acting on nucleic acids as therapeutic targets. Drug Discovery Today: Therapeutic Strategies, 2012, 9, e91-e100.	0.5	9
391	Contributions of cardiac "funny―(f) channels and sarcoplasmic reticulum Ca ²⁺ in regulating beating rate of mouse and guinea pig sinoatrial node. Physiological Reports, 2015, 3, e12561.	1.7	9
392	<i>In vitro</i> and <i>in vivo</i> activity of ML302F: a thioenolate inhibitor of VIM-subfamily metallo \hat{l}^2 -lactamases. MedChemComm, 2016, 7, 190-193.	3.4	9
393	Nuclear entry and export of FIH are mediated by HIF1 $\hat{l}\pm$ and exportin1 respectively. Journal of Cell Science, 2018, 131, .	2.0	9
394	Biocatalytic production of bicyclic \hat{l}^2 -lactams with three contiguous chiral centres using engineered crotonases. Communications Chemistry, 2019, 2, .	4.5	9
395	Quantitative MSâ€Based Proteomics: Comparing the MCFâ€7 Cellular Response to Hypoxia and a 2â€Oxoglutarate Analogue. ChemBioChem, 2020, 21, 1647-1655.	2.6	9
396	JMJD6 promotes self-renewal and regenerative capacity of hematopoietic stem cells. Blood Advances, 2021, 5, 889-899.	5.2	9

#	Article	IF	Citations
397	Structure-Based Design of Selective Fat Mass and Obesity Associated Protein (FTO) Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 16609-16625.	6.4	9
398	Development and application of ligand-based NMR screening assays for \hat{l}^3 -butyrobetaine hydroxylase. MedChemComm, 2016, 7, 873-880.	3.4	8
399	"To Cross-Seed or Not To Cross-Seed― A Pilot Study Using Metallo-β-lactamases. Crystal Growth and Design, 2017, 17, 913-924.	3.0	8
400	Expansion of base excision repair compensates for a lack of DNA repair by oxidative dealkylation in budding yeast. Journal of Biological Chemistry, 2019, 294, 13629-13637.	3.4	8
401	Studies on spiro[4.5]decanone prolyl hydroxylase domain inhibitors. MedChemComm, 2019, 10, 500-504.	3.4	8
402	Small-molecule active pharmaceutical ingredients of approved cancer therapeutics inhibit human aspartate/asparagine-l²-hydroxylase. Bioorganic and Medicinal Chemistry, 2020, 28, 115675.	3.0	8
403	Fluorinated derivatives of pyridine-2,4-dicarboxylate are potent inhibitors of human 2-oxoglutarate dependent oxygenases. Journal of Fluorine Chemistry, 2021, 247, 109804.	1.7	8
404	A phosphate binding pocket is a key determinant of exo- versus endo-nucleolytic activity in the SNM1 nuclease family. Nucleic Acids Research, 2021, 49, 9294-9309.	14.5	8
405	Synthesis of 2-oxoglutarate derivatives and their evaluation as cosubstrates and inhibitors of human aspartate/asparagine-β-hydroxylase. Chemical Science, 2021, 12, 1327-1342.	7.4	8
406	Studies on the Reactions of Biapenem with VIM Metallo \hat{l}^2 -Lactamases and the Serine \hat{l}^2 -Lactamase KPC-2. Antibiotics, 2022, 11, 396.	3.7	8
407	Cephalosporin C biosynthesis; stereochemistry of the incorporation of D,L,D- \hat{l} -aminodipoyl-cysteinyl-(3S)-[2-2H,4-13C]valine into \hat{l} -lactam compounds. Journal of the Chemical Society Chemical Communications, 1989, , 1141-1143.	2.0	7
408	Use of Methylmalonylâ€CoA Epimerase in Enhancing Crotonase Stereoselectivity. ChemBioChem, 2016, 17, 471-473.	2.6	7
409	Lysineâ€241 Has a Role in Coupling 2OG Turnover with Substrate Oxidation During KDM4â€Catalysed Histone Demethylation. ChemBioChem, 2018, 19, 917-921.	2.6	7
410	A small-molecule probe for monitoring binding to prolyl hydroxylase domain 2 by fluorescence polarisation. Chemical Communications, 2020, 56, 14199-14202.	4.1	7
411	Oneâ€Step Synthesis of Photoaffinity Probes for Liveâ€Cell MSâ€Based Proteomics. Chemistry - A European Journal, 2021, 27, 17880-17888.	3.3	7
412	Kinetic and Structural Characterization of the First B3 Metallo- \hat{l}^2 -Lactamase with an Active-Site Glutamic Acid. Antimicrobial Agents and Chemotherapy, 2021, 65, e0093621.	3.2	7
413	CHAPTER 6. The Role of 2-Oxoglutarate-Dependent Oxygenases in Hypoxia Sensing. 2-Oxoglutarate-Dependent Oxygenases, 2015, , 169-209.	0.8	7
414	First-in-Class Inhibitors of the Ribosomal Oxygenase MINA53. Journal of Medicinal Chemistry, 2021, 64, 17031-17050.	6.4	7

#	Article	IF	CITATIONS
415	Mass spectrometry reveals elastase inhibitors from the reactive centre loop of $\hat{l}\pm 1$ -antitrypsin. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 1219-1221.	2.2	6
416	Studies of isopenicillin N synthase enzymatic properties using a continuous spectrophotometric assay. FEBS Letters, 2000, 485, 142-146.	2.8	6
417	YcfDRM is a thermophilic oxygen-dependent ribosomal protein uL16 oxygenase. Extremophiles, 2018, 22, 553-562.	2.3	6
418	Studies on the Substrate Selectivity of the Hypoxiaâ€Inducible Factor Prolyl Hydroxylaseâ€2 Catalytic Domain. ChemBioChem, 2018, 19, 2262-2267.	2.6	6
419	Small-molecules that covalently react with a human prolyl hydroxylase – towards activity modulation and substrate capture. Chemical Communications, 2019, 55, 1020-1023.	4.1	6
420	Reducing Agentâ€Mediated Nonenzymatic Conversion of 2â€Oxoglutarate to Succinate: Implications for Oxygenase Assays. ChemBioChem, 2020, 21, 2898-2902.	2.6	6
421	A human protein hydroxylase that accepts D-residues. Communications Chemistry, 2020, 3, .	4.5	6
422	Expanding the Repertoire of Lowâ€Molecularâ€Weight Pentafluorosulfanylâ€Substituted Scaffolds. ChemMedChem, 2022, 17, e202100641.	3.2	6
423	Studies on enmetazobactam clarify mechanisms of widely used \hat{l}^2 -lactamase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117310119.	7.1	6
424	Photoactivable peptides for identifying enzyme–substrate and protein–protein interactions. Chemical Communications, 2011, 47, 1488-1490.	4.1	5
425	Stereoselective Production of Dimethyl-Substituted Carbapenams via Engineered Carbapenem Biosynthesis Enzymes. ACS Catalysis, 2017, 7, 1279-1285.	11.2	5
426	Formaldehyde quantification using ampicillin is not selective. Scientific Reports, 2019, 9, 18289.	3.3	5
427	Selective Inhibitors of a Human Prolyl Hydroxylase (OGFOD1) Involved in Ribosomal Decoding. Chemistry - A European Journal, 2019, 25, 2019-2024.	3.3	5
428	Inhibition of JMJD6 by 2â€Oxoglutarate Mimics. ChemMedChem, 2022, 17, e202100398.	3.2	5
429	Use of cyclic peptides to induce crystallization: case study with prolyl hydroxylase domain 2. Scientific Reports, 2020, 10, 21964.	3.3	5
430	Investigations on Zinc Isotope Fractionation in Breast Cancer Tissue Using in vitro Cell Culture Uptake-Efflux Experiments. Frontiers in Medicine, 2021, 8, 746532.	2.6	5
431	Reading and erasing of the phosphonium analogue of trimethyllysine by epigenetic proteins. Communications Chemistry, 2022, 5, .	4.5	5
432	Combined proteomic and biochemical analyses redefine the consensus sequence requirement for epidermal growth factor-like domain hydroxylation. Journal of Biological Chemistry, 2022, 298, 102129.	3.4	5

#	Article	IF	Citations
433	A New Mechanism for βâ€Lactamases: Class D Enzymes Degrade 1βâ€Methyl Carbapenems through Lactone Formation. Angewandte Chemie, 2018, 130, 1296-1299.	2.0	4
434	Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. Chemical Record, 2018, 18, 1760-1781.	5.8	4
435	Inhibition of a viral prolyl hydroxylase. Bioorganic and Medicinal Chemistry, 2019, 27, 2405-2412.	3.0	4
436	$^{\circ}$ sup>19 $^{\circ}$ NMR studies on \hat{I}^3 -butyrobetaine hydroxylase provide mechanistic insights and suggest a dual inhibition mode. Chemical Communications, 2019, 55, 14717-14720.	4.1	4
437	Nonâ€Hydrolytic βâ€Lactam Antibiotic Fragmentation by <scp>l,d</scp> â€Transpeptidases and Serine βâ€Lactamase Cysteine Variants. Angewandte Chemie, 2019, 131, 2012-2016.	2.0	4
438	Discovery of neuroprotective agents that inhibit human prolyl hydroxylase PHD2. Bioorganic and Medicinal Chemistry, 2021, 38, 116115.	3.0	4
439	Synthesis and Application of Constrained Amidoboronic Acids Using Amphoteric Boron-Containing Building Blocks. Journal of Organic Chemistry, 2022, 87, 94-102.	3.2	4
440	Factor inhibiting HIF can catalyze two asparaginyl hydroxylations in VNVN motifs of ankyrin fold proteins. Journal of Biological Chemistry, 2022, 298, 102020.	3.4	4
441	¹⁹ Fâ€NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metalloâ€Î²â€Lactamase. Angewandte Chemie, 2017, 129, 3920-3924.	2.0	3
442	Synthesis of a bicyclic oxo- \hat{l}^3 -lactam from a simple caprolactam derivative. New Journal of Chemistry, 2017, 41, 9984-9989.	2.8	3
443	Human histone demethylase KDM6B can catalyse sequential oxidations. Chemical Communications, 2018, 54, 7975-7978.	4.1	3
444	What Is the Catalytic Mechanism of Enzymatic Histone Nâ€Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field?. Chemistry - A European Journal, 2021, 27, 11750-11750.	3.3	3
445	Conservation of the unusual dimeric JmjC fold of JMJD7 from Drosophila melanogaster to humans. Scientific Reports, 2022, 12, 6065.	3.3	3
446	Broadâ€range metalloprotease profiling in plants uncovers immunity provided by defenceâ€related metalloenzyme. New Phytologist, 2022, 235, 1287-1301.	7.3	3
447	Oxygenases for oxygen sensing. Pure and Applied Chemistry, 2008, 80, 1837-1847.	1.9	2
448	Quantifying the Binding Interaction between the Hypoxia-Inducible Transcription Factor and the von Hippel–Lindau Suppressor. Journal of Chemical Theory and Computation, 2015, 11, 3946-3954.	5.3	2
449	In Vitro Enzyme Assays for JmjCâ€Domainâ€Containing Lysine Histone Demethylases (JmjCâ€KDMs). Current Protocols in Pharmacology, 2018, 80, 3.15.1-3.15.12.	4.0	2
450	A Fluorescent Benzo[g]isoquinoline-Based HIF Prolyl Hydroxylase Inhibitor for Cellular Imaging. ChemMedChem, 2019, 14, 94-99.	3.2	2

#	ARTICLE	lF	CITATIONS
451	Metampicillin is a cyclic aminal produced by reaction of ampicillin with formaldehyde. Scientific Reports, 2020, 10, 17955.	3.3	2
452	Monitoring protein-metal binding by 19F NMR $\hat{a} \in \hat{a}$ a case study with the New Delhi metallo- \hat{l}^2 -lactamase 1. RSC Medicinal Chemistry, 2020, 11, 387-391.	3.9	2
453	Improved Synthesis of Phosphoramidite-Protected N6-Methyladenosine via BOP-Mediated SNAr Reaction. Molecules, 2021, 26, 147.	3.8	2
454	Titelbild: Monitoring Conformational Changes in the NDM-1 Metallo-β-lactamase by19Fâ€NMR Spectroscopy (Angew. Chem. 12/2014). Angewandte Chemie, 2014, 126, 3095-3095.	2.0	1
455	Evaluation of 3-carbamoylpropanoic acid analogs as inhibitors of human hypoxia-inducible factor (HIF) prolyl hydroxylase domain enzymes. Medicinal Chemistry Research, 2021, 30, 977-986.	2.4	1
456	Frontispiece: Cation–π Interactions Contribute to Substrate Recognition in γâ€Butyrobetaine Hydroxylase Catalysis. Chemistry - A European Journal, 2016, 22, .	3.3	0
457	Human Oxygenase Variants Employing a Single Protein Fe II Ligand Are Catalytically Active. Angewandte Chemie, 2021, 133, 14778-14784.	2.0	0
458	Symmetry breaking by enzyme-catalyzed epoxide hydrolysis. IUCrJ, 2018, 5, 373-374.	2.2	0
459	Novel 2â€Oxoglutarate Analogues Modulate the Epigenetic Activity of the Cancerâ€related Human Enzyme Aspartate/Asparagineâ€Î²â€Hydroxylase. FASEB Journal, 2020, 34, 1-1.	0.5	0
460	Spectroscopic studies reveal details of substrate-induced conformational changes distant from the active site in isopenicillin N synthase. Journal of Biological Chemistry, 2022, , 102249.	3.4	0