Baoliang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2533637/publications.pdf

Version: 2024-02-01

50170 85405 7,027 177 46 71 citations h-index g-index papers 179 179 179 5337 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Simple and facile preparation of tunable chitosan tubular nanocomposite microspheres for fast uranium(VI) removal from seawater. Chemical Engineering Journal, 2022, 427, 130934.	6.6	37
2	Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. Journal of Colloid and Interface Science, 2022, 607, 633-644.	5.0	76
3	Preparation of core-shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption. Journal of Colloid and Interface Science, 2022, 607, 1036-1049.	5.0	34
4	Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water (Switzerland), 2022, 14, 242.	1.2	438
5	Preparation of Three-Dimensional Mo ₂ C/NC@MXene and Its Efficient Electromagnetic Absorption Properties. ACS Applied Materials & Samp; Interfaces, 2022, 14, 7109-7120.	4.0	42
6	MOF-derived magnetic-dielectric balanced Co@ZnO@N-doped carbon composite materials for strong microwave absorption. Carbon, 2022, 190, 366-375.	5.4	66
7	Three-dimensional FeMZn (MÂ=ÂCo or Ni) MOFs: Ions coordinated self-assembling processes and boosting microwave absorption. Chemical Engineering Journal, 2022, 435, 134905.	6.6	41
8	The Multicomponent Synergistic Effect of Sandwich Structure Hierarchical Nanofibers for Enhanced Sodium Storage. Small, 2022, 18, e2107370.	5.2	11
9	Facile synthesis of superhydrophobic coating with icing delay ability by the self-assembly of PVDF clusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128562.	2.3	10
10	Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties. Journal of Materials Science and Technology, 2022, 117, 36-48.	5.6	24
11	Ternary assembled MOF-derived composite: Anisotropic epitaxial growth and microwave absorption. Composites Part B: Engineering, 2022, 236, 109839.	5. 9	43
12	Heteroatom doping hollow vanadium oxide/carbon composites as universal anode materials for efficient alkali-metal ion storage. Carbon, 2022, 192, 30-40.	5.4	11
13	Access to tetracoordinate boron-doped polycyclic aromatic hydrocarbons with delayed fluorescence and aggregation-induced emission under mild conditions. Chemical Science, 2022, 13, 5597-5605.	3.7	13
14	Estimating Preferred Alkane Carbon Numbers of Nonionic Surfactants in Normalized Hydrophilic–Lipophilic Deviation Theory from Dissipative Particle Dynamics Modeling. Journal of Physical Chemistry B, 2022, 126, 3593-3606.	1.2	2
15	Ultra-light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106986.	3.8	43
16	Hollow nitrogen-doped carbon nanofibers filled with MnO2 nanoparticles/nanosheets as high-performance microwave absorbing materials. Carbon, 2022, 196, 49-58.	5.4	45
17	Core-shell structured Co@NC@MoS2 magnetic hierarchical nanotubes: Preparation and microwave absorbing properties. Journal of Materials Science and Technology, 2022, 128, 148-159.	5.6	23
18	Constructing TCNFs/MXene/TiO2 microspheres with wrinkled surface for excellent electromagnetic wave absorption. Journal of Alloys and Compounds, 2022, 918, 165623.	2.8	6

#	Article	IF	Citations
19	Antiâ€nonspecific adsorption segmentsâ€assisted selfâ€driven surface imprinted fibers for efficient protein separation. AICHE Journal, 2022, 68, .	1.8	3
20	Hierarchical micro/nano/porous structure PVDF/hydrophobic GO photothermal membrane with highly efficient anti-icing/de-icing performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129586.	2.3	20
21	Tailoring carboxyl tubular carbon nanofibers/MnO ₂ composites for highâ€performance lithiumâ€ion battery anodes. Journal of the American Ceramic Society, 2021, 104, 1402-1414.	1.9	6
22	Development of surface imprinted heterogeneous nitrogen-doped magnetic carbon nanotubes as promising materials for protein separation and purification. Talanta, 2021, 224, 121760.	2.9	25
23	Mechanically robust, self-healing superhydrophobic anti-icing coatings based on a novel fluorinated polyurethane synthesized by a two-step thiol click reaction. Chemical Engineering Journal, 2021, 404, 127110.	6.6	92
24	Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA. Journal of Materials Science and Technology, 2021, 74, 203-215.	5.6	26
25	Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon, 2021, 172, 1-14.	5.4	208
26	Metal coordination assisted thermo-sensitive magnetic imprinted microspheres for selective adsorption and efficient elution of proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125981.	2.3	14
27	Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti3C2Tx MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management. Journal of Alloys and Compounds, 2021, 860, 158151.	2.8	35
28	Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption. Carbon, 2021, 173, 918-931.	5.4	118
29	MnO2 corolla-like magnetic molecularly imprinted microspheres with enhanced adsorption capacity and specificity recognition to bovine serum albumin. Chemical Engineering Journal, 2021, 405, 126655.	6.6	18
30	Facile one-step synthesis of magnetic Zeolitic Imidazolate Framework for ultra fast removal of Congo red from water. Microporous and Mesoporous Materials, 2021, 311, 110712.	2.2	20
31	Surface-initiated ARGET ATRP of poly(glycidyl methacrylate) from macroporous hydrogels via oil-in-water high internal phase emulsion templates for specific capture of Enterovirus 71. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126233.	2.3	4
32	Efficient synthesis of N-doped porous carbon nanoribbon composites with selective microwave absorption performance in common wavebands. Carbon, 2021, 175, 164-175.	5.4	69
33	Length controllable tubular carbon nanofibers: Surface adjustment and oil adsorption performances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126272.	2.3	9
34	Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106378.	3.8	100
35	Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption. Composites Part B: Engineering, 2021, 215, 108814.	5.9	81
36	Cobalt-Iron Double Ion-Bovine Serum Albumin Chelation-Assisted Thermo-Sensitive Surface-Imprinted Nanocage with High Specificity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34829-34842.	4.0	16

#	Article	IF	CITATIONS
37	Fabrication of Surface-Imprinted Magnetic Wrinkled Microspheres and Their Specific Adsorption of BSA. Industrial & Engineering Chemistry Research, 2021, 60, 11277-11288.	1.8	8
38	Preparation of amidoxime modified porous organic polymer flowers for selective uranium recovery from seawater. Chemical Engineering Journal, 2021, 418, 129370.	6.6	92
39	Wrinkled three-dimensional porous MXene/Ni composite microspheres for efficient broadband microwave absorption. Carbon, 2021, 181, 58-68.	5.4	93
40	Bimetallic MOFs-derived yolk-shell structure ZnCo/NC@TiO2 and its microwave absorbing properties. Applied Surface Science, 2021, 556, 149715.	3.1	49
41	Synthesis of bowknot-like N-doped Co@C magnetic nanoparticles constituted by acicular structural units for excellent microwave absorption. Carbon, 2021, 181, 28-39.	5.4	53
42	MXene@Fe3O4 microspheres/fibers composite microwave absorbing materials: Optimum composition and performance evaluation. Carbon, 2021, 182, 770-780.	5. 4	58
43	Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties. Carbon, 2021, 182, 484-496.	5.4	53
44	Identification of imprinted sites by fluorescence detection method based on reversible dynamic bond modified template protein. Composites Part B: Engineering, 2021, 223, 109154.	5.9	4
45	MOF-derived yolk-shell Co@ZnO/Ni@NC nanocage: Structure control and electromagnetic wave absorption performance. Journal of Colloid and Interface Science, 2021, 600, 99-110.	5.0	74
46	Synthesis and microwave absorbing properties of N-doped carbon microsphere composites with concavo-convex surface. Carbon, 2021, 184, 195-206.	5. 4	35
47	Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chemical Engineering Journal, 2021, 422, 130591.	6.6	115
48	Wrinkled Fe3O4@C magnetic composite microspheres: Regulation of magnetic content and their microwave absorbing performance. Journal of Colloid and Interface Science, 2021, 601, 397-410.	5.0	43
49	Design of core–shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chemical Engineering Journal, 2021, 426, 131308.	6.6	65
50	Preparation of multi-functional polyamide vitrimers <i>via</i> the Ugi four-component polymerization and oxime-promoted transcarbamoylation reaction. Polymer Chemistry, 2021, 12, 2009-2015.	1.9	12
51	Preparation of carbon nanotube-vitrimer composites based on double dynamic covalent bonds: Electrical conductivity, reprocessability, degradability and photo-welding. Polymer, 2021, 235, 124280.	1.8	19
52	Polymer brushâ€grafted monolithic macroporous polyHIPEs obtained by surfaceâ€initiated ARGET ATRP and heparinized for Enterovirus 71 purification. Journal of Applied Polymer Science, 2021, 138, 50427.	1.3	3
53	Magnetic tubular carbon nanofibers as efficient $Cu(II)$ ion adsorbent from wastewater. Journal of Cleaner Production, 2020, 252, 119825.	4.6	58
54	Design and preparation of bioinspired slippery liquid-infused porous surfaces with anti-icing performance via delayed phase inversion process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588, 124384.	2.3	28

#	Article	IF	CITATIONS
55	Thermoâ€sensitive surface molecularly imprinted magnetic microspheres based on bioâ€macromolecules and their specific recognition of bovine serum albumin. Journal of Separation Science, 2020, 43, 996-1002.	1.3	10
56	Highly monodisperse dumbbell-like yolk-shell manganese monoxide/carbon microspheres for lithium storage and their lithiation evolution. Carbon, 2020, 170, 37-48.	5 . 4	24
57	A magnetic ion exchange resin with high efficiency of removing Cr (VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125279.	2.3	50
58	Biomimetic Brushlike Slippery Coatings with Mechanically Robust, Self-Cleaning, and Icephobic Properties. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54041-54052.	4.0	39
59	Core-shell structured Fe/Fe3O4@TCNFs@TiO2 magnetic hybrid nanofibers: Preparation and electromagnetic parameters regulation for enhanced microwave absorption. Carbon, 2020, 165, 275-285.	5.4	81
60	Fabrication of magnetic tubular fiber with multi-layer heterostructure and its microwave absorbing properties. Journal of Colloid and Interface Science, 2020, 577, 242-255.	5.0	67
61	Modified Tubular Carbon Nanofibers for Adsorption of Uranium(VI) from Water. ACS Applied Nano Materials, 2020, 3, 6394-6405.	2.4	34
62	Facile synthesis of tubular magnetic carbon nanofibers by hypercrosslinked polymer design for microwave adsorption. Journal of the American Ceramic Society, 2020, 103, 5706-5720.	1.9	17
63	Thiolactone-based conjugation assisted magnetic imprinted microspheres for specific capturing target proteins. Chemical Engineering Journal, 2020, 399, 125767.	6.6	14
64	Monolithic macroporous hydrogels prepared from oil-in-water high internal phase emulsions for high-efficiency purification of Enterovirus 71. Chemical Engineering Journal, 2020, 401, 126051.	6.6	11
65	Fabrication of wrinkled carbon microspheres and the effect of surface roughness on the microwave absorbing properties. Chemical Engineering Journal, 2020, 401, 126027.	6.6	75
66	Preparation of CTCNFs/Co ₉ S ₈ hybrid nanofibers with enhanced microwave absorption performance. Nanotechnology, 2020, 31, 225605.	1.3	10
67	Self-Driven BSA Surface Imprinted Magnetic Tubular Carbon Nanofibers: Fabrication and Adsorption Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 3241-3252.	3.2	21
68	Ultrasonic-assisted preparation of amidoxime functionalized silica framework via oil-water emulsion method for selective uranium adsorption. Chemical Engineering Journal, 2020, 389, 124441.	6.6	62
69	Preparation of BSA surface imprinted manganese dioxide-loaded tubular carbon fibers with excellent specific rebinding to target protein. Journal of Colloid and Interface Science, 2020, 570, 182-196.	5.0	26
70	Novel synthetic method for magnetic sulphonated tubular trap for efficient mercury removal from wastewater. Journal of Colloid and Interface Science, 2020, 565, 523-535.	5.0	16
71	Direct Synthesis of Two-Dimensional Metal–Organic Framework Nanoplates for Noble Metal Load and Gaseous Iodine Adsorption. Crystal Growth and Design, 2020, 20, 1378-1382.	1.4	6
72	Preparation of Novel Bifunctional Magnetic Tubular Nanofibers and Their Application in Efficient and Irreversible Uranium Trap from Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2020, 8, 7825-7838.	3.2	29

#	Article	lF	Citations
73	Preparation of environmentally friendly bio-based vitrimers from vanillin derivatives by introducing two types of dynamic covalent C N and S–S bonds. Polymer, 2020, 197, 122483.	1.8	40
74	Insight into Ce Doping Induced Oxygen Vacancies over <scp>Ceâ€Doped</scp> Mno ₂ Catalysts for Imine Synthesis. Chinese Journal of Chemistry, 2020, 38, 1353-1359.	2.6	22
75	Synthesis of CeO ₂ nanoparticles with different morphologies and their properties as peroxidase mimic. Journal of the American Ceramic Society, 2019, 102, 2218-2227.	1.9	25
76	Ni ²⁺ -BSA Directional Coordination-Assisted Magnetic Molecularly Imprinted Microspheres with Enhanced Specific Rebinding to Target Proteins. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25682-25690.	4.0	43
77	A novel synthetic method for tubular nanofibers. Polymer Chemistry, 2019, 10, 4239-4245.	1.9	27
78	Design and preparation of a multi-fluorination organic superhydrophobic coating with high mechanical robustness and icing delay ability. Applied Surface Science, 2019, 497, 143663.	3.1	51
79	Magnetic tubular carbon nanofibers as anode electrodes for highâ€performance lithiumâ€ion batteries. International Journal of Energy Research, 2019, 43, 8242.	2.2	12
80	Preparation of Antiâ€Nonspecific Adsorption Chitosanâ€Based Bovine Serum Albumin Imprinted Polymers with Outstanding Adsorption Capacity and Selective Recognition Ability Based on Magnetic Microspheres. Macromolecular Materials and Engineering, 2019, 304, 1800731.	1.7	15
81	Preparation of pH and temperature dualâ€sensitive molecularly imprinted polymers based on chitosan and <i>N</i> àêisopropylacrylamide for recognition of bovine serum albumin. Polymer International, 2019, 68, 955-963.	1.6	19
82	Design and preparation of self-driven BSA surface imprinted tubular carbon nanofibers and their specific adsorption performance. Chemical Engineering Journal, 2019, 373, 923-934.	6.6	65
83	Synthesis and evaluation of N, Oâ€doped hypercrosslinked polymers and their performance in CO ₂ capture. Applied Organometallic Chemistry, 2019, 33, e5025.	1.7	15
84	Tubular carbon nanofibers: Synthesis, characterization and applications in microwave absorption. Carbon, 2019, 152, 255-266.	5.4	120
85	New method for hydrogel synthesis from diphenylcarbazide chitosan for selective copper removal. International Journal of Biological Macromolecules, 2019, 136, 189-198.	3.6	53
86	Surface molecularly imprinted thermo-sensitive polymers based on light-weight hollow magnetic microspheres for specific recognition of BSA. Applied Surface Science, 2019, 486, 265-273.	3.1	56
87	Preparation of surface protein imprinted thermosensitive polymer monolithic column and its specific adsorption for BSA. Talanta, 2019, 200, 526-536.	2.9	34
88	Surface Microstructure Regulation of Porous Polymer Microspheres by Volume Contraction of Phase Separation Process in Traditional Suspension Polymerization System. Macromolecular Rapid Communications, 2019, 40, e1800768.	2.0	17
89	Hydrophilic Fe ₃ O ₄ nanoparticles prepared by ferrocene as highâ€efficiency heterogeneous Fenton catalyst for the degradation of methyl orange. Applied Organometallic Chemistry, 2019, 33, e4826.	1.7	12
90	Robust Organic–Inorganic Composite Films with Multifunctional Properties of Superhydrophobicity, Self-Healing, and Drag Reduction. Industrial & Engineering Chemistry Research, 2019, 58, 4468-4478.	1.8	38

#	Article	IF	Citations
91	Novel Synthetic Method for Magnetic Porous Carbon Materials for Efficient Adsorption of Organic Pollutants from Aqueous Solution. Journal of Chemical & Engineering Data, 2019, 64, 5974-5984.	1.0	4
92	Design and preparation of biomimetic polydimethylsiloxane (PDMS) films with superhydrophobic, self-healing and drag reduction properties via replication of shark skin and SI-ATRP. Chemical Engineering Journal, 2019, 356, 318-328.	6.6	176
93	Fabrication and characterization of controllable wrinkled-surface polymer microparticles. Journal of Materials Science, 2019, 54, 5852-5864.	1.7	17
94	Facile fabrication of hierarchical porous ZIF-8 for enhanced adsorption of antibiotics. Journal of Hazardous Materials, 2019, 367, 194-204.	6.5	129
95	Preparation of Functionalized SiO2 Microspheres by One Step Method. Silicon, 2019, 11, 2819-2827.	1.8	1
96	Performance-modified polyimine vitrimers: flexibility, thermal stability and easy reprocessing. Journal of Materials Science, 2019, 54, 2690-2698.	1.7	26
97	A stable 3D sol-gel network with dangling fluoroalkyl chains and rapid self-healing ability as a long-lived superhydrophobic fabric coating. Chemical Engineering Journal, 2018, 334, 598-610.	6.6	80
98	Fe3O4@SiO2@CCS porous magnetic microspheres as adsorbent for removal of organic dyes in aqueous phase. Journal of Alloys and Compounds, 2018, 735, 1986-1996.	2.8	45
99	Controllable Synthesis and Growth Mechanism of Ceria Nanocubes by Templateâ€Free Hydrothermal Method. Crystal Research and Technology, 2018, 53, 1700233.	0.6	8
100	Preparation of Magnetic Hyper-Cross-Linked Polymers for the Efficient Removal of Antibiotics from Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 210-222.	3.2	50
101	A conjugation polyimine vitrimer: Fabrication and performance. Journal of Polymer Science Part A, 2018, 56, 2531-2538.	2.5	60
102	Hydroxyl-Based Hyper-Cross-Linked Microporous Polymers and Their Excellent Performance for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2018, 57, 17259-17265.	1.8	35
103	Flowerlike BSA/Zn ₃ (PO ₄) ₂ /Fe ₃ O ₄ Magnetic Hybrid Particles: Preparation and Application to Adsorption of Copper Ions. Journal of Chemical & Chemi	1.0	24
104	Heparinâ€Immobilized Polymeric Monolithic Column with Submicron Skeletons and Wellâ€Defined Macropores for Highly Efficient Purification of Enterovirus 71. Macromolecular Materials and Engineering, 2018, 303, 1800411.	1.7	12
105	Fabrication of micron-sized BSA-imprinted polymers with outstanding adsorption capacity based on poly(glycidyl methacrylate)/polystyrene (PGMA/PS) anisotropic microspheres. Journal of Materials Chemistry B, 2018, 6, 5860-5866.	2.9	26
106	Quaternary ammonium functionalized Fe ₃ O ₄ & amp; P(GMA-AA-DVB) magnetic Janus particles as highly efficient catalysts for phase transfer reactions. Dalton Transactions, 2018, 47, 12893-12900.	1.6	7
107	Preparation of self-healing, recyclable epoxy resins and low-electrical resistance composites based on double-disulfide bond exchange. Composites Science and Technology, 2018, 167, 79-85.	3.8	146
108	Preparation and photothermal therapy of hyaluronic acid–conjugated Au nanoparticle-coated poly (glycidyl methacrylate) nanocomposites. Journal of Materials Science, 2018, 53, 16252-16262.	1.7	7

#	Article	IF	Citations
109	Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury. Experimental Neurology, 2018, 307, 99-108.	2.0	61
110	Preparation and photothermal study of polystyrene coated with gold nanoshell composite particles. Journal of Materials Science, 2017, 52, 6581-6590.	1.7	7
111	Synthesis of fibrous and non-fibrous mesoporous silica magnetic yolk–shell microspheres as recyclable supports for immobilization of Candida rugosa lipase. Enzyme and Microbial Technology, 2017, 103, 42-52.	1.6	45
112	Low-maintenance superamphiphobic coating based on a smart two-layer self-healing network. Surface and Coatings Technology, 2017, 331, 97-106.	2.2	17
113	Design and fabrication of robust, rapid self-healable, superamphiphobic coatings by a liquid-repellent "glue + particles―approach. Materials and Design, 2017, 135, 16-25.	3.3	44
114	Fabrication and characterization of glutathione-imprinted polymers on fibrous SiO 2 microspheres with high specific surface. Chemical Engineering Journal, 2017, 327, 932-940.	6.6	35
115	Magnetic mesoporous microspheres modified with hyperbranched amine for the immobilization of penicillin G acylase. Biochemical Engineering Journal, 2017, 127, 43-52.	1.8	32
116	Synthesis of paramagnetic dendritic silica nanomaterials with fibrous pore structure (Fe ₃ O ₄ @KCC-1) and their application in immobilization of lipase from Candida rugosa with enhanced catalytic activity and stability. New Journal of Chemistry, 2017, 41, 8222-8231.	1.4	33
117	A series of nanoparticles with phase-separated structures by 1,1-diphenylethene controlled one-step soap-free emulsion copolymerization and their application in drug release. Nano Research, 2017, 10, 2905-2922.	5.8	14
118	Preparation of anti-nonspecific adsorption polydopamine-based surface protein-imprinted magnetic microspheres with the assistance of 2-methacryloyloxyethyl phosphorylcholine and its application for protein recognition. Sensors and Actuators B: Chemical, 2017, 241, 413-421.	4.0	60
119	Preparation of light core/shell magnetic composite microspheres and their application for lipase immobilization. RSC Advances, 2016, 6, 65911-65920.	1.7	13
120	Ultrahigh humidity sensitivity of NaCl-added 3D mesoporous silica KIT-6 and its sensing mechanism. RSC Advances, 2016, 6, 38391-38398.	1.7	27
121	Papain/Zn ₃ (PO ₄) ₂ hybrid nanoflower: preparation, characterization and its enhanced catalytic activity as an immobilized enzyme. RSC Advances, 2016, 6, 46702-46710.	1.7	79
122	Effect of the Structure and Length of Flexible Chains on Dendrimers Grafted Fe ₃ O ₄ @SiO ₂ /PAMAM Magnetic Nanocarriers for Lipase Immobilization. ACS Sustainable Chemistry and Engineering, 2016, 4, 6382-6390.	3.2	34
123	Fe ₃ O ₄ @P(DVB/MAA)/Pd composite microspheres: preparation and catalytic degradation performance. RSC Advances, 2016, 6, 100598-100604.	1.7	14
124	Largeâ€Scale Fabrication of Polymer Microcavities with Adjustable Openings and Surface Roughness Regulated by the Polarity of both Seed Surface and Monomers. Macromolecular Rapid Communications, 2016, 37, 47-52.	2.0	21
125	Design of Raspberry-Shaped Microcarriers with Adjustable Protrusions and Functional Groups for the Improvement of Lipase Immobilization and Biocatalysis: Environmentally Friendly Esterification of Oleic Acid for Biodiesel. ChemCatChem, 2016, 8, 2576-2576.	1.8	1
126	Antagonistic effect of particles and surfactant on pore structure of macroporous materials based on high internal phase emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 550-556.	2.3	28

#	Article	IF	CITATIONS
127	Grafting-through Strategy in Emulsion: An Eco-friendly and Effective Route for the Synthesis of Graft Copolymers. ChemistrySelect, 2016, 1, 1870-1878.	0.7	1
128	Preparation of quaternary amine monolithic column for strong anion-exchange chromatography and its application to the separation of Enterovirus 71. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033-1034, 399-405.	1,2	8
129	Design of Raspberryâ€Shaped Microcarriers with Adjustable Protrusions and Functional Groups for the Improvement of Lipase Immobilization and Biocatalysis: Environmentally Friendly Esterification of Oleic Acid for Biodiesel. ChemCatChem, 2016, 8, 2634-2641.	1.8	0
130	Hypercrosslinked polymers: controlled preparation and effective adsorption of aniline. Journal of Materials Science, 2016, 51, 8579-8592.	1.7	33
131	Preparation of one-dimensional Fe3O4@P(MAA-DVB)â€"Pd(0) magnetic nanochains and application for rapid degradation of organic dyes. RSC Advances, 2016, 6, 97882-97889.	1.7	9
132	Robust, self-healing, superhydrophobic coatings highlighted by a novel branched thiol-ene fluorinated siloxane nanocomposites. Composites Science and Technology, 2016, 137, 78-86.	3.8	67
133	Effect of crosslinking degree and thickness of thermosensitive imprinted layers on recognition and elution efficiency of protein imprinted magnetic microspheres. Sensors and Actuators B: Chemical, 2016, 225, 436-445.	4.0	47
134	Controllable synthesis of spherical cerium oxide particles. RSC Advances, 2016, 6, 30956-30962.	1.7	15
135	Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chemical Engineering Journal, 2016, 291, 287-297.	6.6	166
136	Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions. Applied Surface Science, 2016, 366, 328-338.	3.1	59
137	Efficient Photocatalytic Degradation of Dyes over Hierarchical BiOBr/βâ€Co(OH) ₂ /PVP Multicomponent Photocatalyst under Visibleâ€Light Irradiation. ChemCatChem, 2015, 7, 4163-4172.	1.8	15
138	Monodispers and Multifunctional Magnetic Composite Core Shell Microspheres for Demulsification Applications. Journal of the Chinese Chemical Society, 2015, 62, 695-702.	0.8	33
139	Bovine serum albumin surface imprinted polymer fabricated by surface grafting copolymerization on zinc oxide rods and its application for protein recognition. Journal of Separation Science, 2015, 38, 3477-3486.	1.3	16
140	Fabrication of electromagnetic Fe ₃ O ₄ @polyaniline nanofibers with high aspect ratio. RSC Advances, 2015, 5, 9986-9992.	1.7	28
141	Synthesis and characterization of brush-like multigraft copolymers P n BA- g -PMMA by a combination of emulsion AGET ATRP and emulsion polymerization. Journal of Colloid and Interface Science, 2015, 453, 226-236.	5.0	20
142	Investigation of selective etching mechanism and its dependency on the particle size in preparation of hollow silica spheres. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	2
143	Tunable wettability of hierarchical structured coatings derived from one-step synthesized raspberry-like poly(styrene-acrylic acid) particles. Polymer Chemistry, 2015, 6, 703-713.	1.9	24
144	Fabrication of a Fe ₃ O ₄ @SiO ₂ @mSiO ₂ -HPG-COOH-Pd(0) supported catalyst and its performance in catalyzing the Suzuki cross-coupling reaction. New Journal of Chemistry, 2015, 39, 2767-2777.	1.4	24

#	Article	IF	CITATIONS
145	Fabrication of PEI grafted Fe ₃ O ₄ /SiO ₂ /P(GMA-co-EGDMA) nanoparticle anchored palladium nanocatalyst and its application in Sonogashira cross-coupling reactions. New Journal of Chemistry, 2015, 39, 2925-2934.	1.4	27
146	Interfacially active and magnetically responsive composite nanoparticles with raspberry like structure; synthesis and its applications for heavy crude oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 472, 38-49.	2.3	84
147	Fabrication and characterization of 1 D Fe3O4/P(NIPAM–MAA–MBA) nanochains with thermo- and pH-responsive shell for controlled release for phenolphthalein. Journal of Materials Science, 2015, 50, 3083-3090.	1.7	10
148	Quaternary ammonium functionalized Fe ₃ O ₄ @P(GMA–EGDMA) composite particles as highly efficient and dispersible catalysts for phase transfer reactions. RSC Advances, 2015, 5, 60691-60697.	1.7	10
149	miR-21 alleviates secondary blood–brain barrier damage after traumatic brain injury in rats. Brain Research, 2015, 1603, 150-157.	1.1	93
150	Magnetic microcapsules with inner asymmetric structure: Controlled preparation, mechanism, and application to drug release. Chemical Engineering Journal, 2015, 275, 235-244.	6.6	22
151	Facile fabrication of multihollow polymer microspheres via novel two-step assembly of P(St-co-nBA-co-AA) particles. Colloid and Polymer Science, 2015, 293, 993-1001.	1.0	9
152	Water-borne thiol–isocyanate click chemistry in microfluidics: rapid and energy-efficient preparation of uniform particles. Polymer Chemistry, 2015, 6, 4366-4373.	1.9	27
153	Synthesis of rattle-type magnetic mesoporous Fe ₃ O ₄ @mSiO ₂ @BiOBr hierarchical photocatalyst and investigation of its photoactivity in the degradation of methylene blue. RSC Advances, 2015, 5, 48050-48059.	1.7	20
154	Hollow Mesoporous SiO ₂ â€"BiOBr Nanophotocatalyst: Synthesis, Characterization and Application in Photodegradation of Organic Dyes under Visible-Light Irradiation. ACS Sustainable Chemistry and Engineering, 2015, 3, 1101-1110.	3.2	54
155	Fast magnetic-field-induced formation of one-dimensional structured chain-like materials via sintering of Fe3O4/poly(styrene-co-n-butyl acrylate-co-acrylic acid) hybrid microspheres. RSC Advances, 2015, 5, 28735-28742.	1.7	9
156	Synthesis of CdTe/P(St-nBA-AA) pierced fluorescent microspheres. RSC Advances, 2015, 5, 33554-33561.	1.7	0
157	Regulating the size and molecular weight of polymeric particles by 1,1-diphenylethene controlled soap-free emulsion polymerization. RSC Advances, 2015, 5, 95183-95190.	1.7	7
158	A novel mechanism of protein thermostability: a unique N-terminal domain confers heat resistance to Fe/Mn-SODs. Scientific Reports, 2015, 4, 7284.	1.6	15
159	Micron-sized flower-like Fe3O4@GMA magnetic porous microspheres for lipase immobilization. RSC Advances, 2015, 5, 92449-92455.	1.7	15
160	Generalized Approach for Fabricating Monodisperse Anisotropic Microparticles via Single-Hole Swelling PGMA Seed Particles. Macromolecules, 2015, 48, 7592-7603.	2.2	55
161	Thiol–isocyanate click reaction in a Pickering emulsion: a rapid and efficient route to encapsulation of healing agents. Polymer Chemistry, 2015, 6, 7100-7111.	1.9	36
162	Improvement of recognition specificity of surface protein-imprinted magnetic microspheres by reducing nonspecific adsorption of competitors using 2-methacryloyloxyethyl phosphorylcholine. Sensors and Actuators B: Chemical, 2015, 208, 559-568.	4.0	50

#	Article	IF	CITATIONS
163	Colloidal particles with various glass transition temperatures: preparation, assembly, and the properties of stop bands under heat treatment. Journal of Materials Science, 2014, 49, 2653-2661.	1.7	11
164	Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition. Biosensors and Bioelectronics, 2014, 51, 261-267.	5.3	152
165	Fast and facile fabrication of porous polymer particles via thiol–ene suspension photopolymerization. RSC Advances, 2014, 4, 13334-13339.	1.7	48
166	Facile fabrication of Fe3O4@PS/PGMA magnetic Janus particles via organic–inorganic dual phase separation. RSC Advances, 2014, 4, 27152.	1.7	21
167	Time-dependent control of phase and morphology transformation of porous ZnO hollow microspheres by a facile one-step solution route. RSC Advances, 2014, 4, 7167.	1.7	11
168	Effect of carboxyl density at the core–shell interface of surface-imprinted magnetic trilayer microspheres on recognition properties of proteins. Sensors and Actuators B: Chemical, 2014, 196, 265-271.	4.0	24
169	Preparation and assembly performance of colloidal particles of photonic crystals with controlled photonic band gaps. Journal of Polymer Research, 2013, 20, 1.	1.2	3
170	Preparation of thermoresponsive Fe3O4/P(acrylic acid–methyl methacrylate–N-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein. Journal of Colloid and Interface Science, 2013, 398, 51-58.	5.0	38
171	Synthesis of Raspberry-Like Poly(styrene–glycidyl methacrylate) Particles via a One-Step Soap-Free Emulsion Polymerization Process Accompanied by Phase Separation. Langmuir, 2013, 29, 11730-11741.	1.6	45
172	Synthesis of BSA/Fe3O4 magnetic composite microspheres for adsorption of antibiotics. Materials Science and Engineering C, 2013, 33, 4401-4408.	3.8	60
173	Preparation and characterization of novel immobilized Fe3O4@SiO2@mSiO2–Pd(0) catalyst with large pore-size mesoporous for Suzuki coupling reaction. Applied Catalysis A: General, 2013, 459, 65-72.	2.2	112
174	THE SIMULATION OF POLYSTYRENE/NANOPARTICLES COMPOSITE MICROSPHERES USING DISSIPATIVE PARTICLE DYNAMICS. Journal of Theoretical and Computational Chemistry, 2013, 12, 1250111.	1.8	5
175	Preparation of diamine-POSS/Ag hybrid microspheres and its application in epoxy resin. Journal of Polymer Research, 2012, 19, 1.	1.2	9
176	Preparation of inner asymmetric composite microspheres. Polymer International, 2012, 61, 990-993.	1.6	3
177	Controlled preparation of Fe3O4/P (St-MA) magnetic composite microspheres by DPE method. Journal of Polymer Research, 2011, 18, 745-751.	1.2	9