

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2533616/publications.pdf Version: 2024-02-01

7<u>г \\/</u>11

#	Article	IF	CITATIONS
1	LIHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LIHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Plant Cell Reports, 2014, 33, 1519-1533.	5.6	61
2	Overexpression of lily HsfA3s in Arabidopsis confers increased thermotolerance and salt sensitivity via alterations in proline catabolism. Journal of Experimental Botany, 2018, 69, 2005-2021.	4.8	61
3	LlWRKY39 is involved in thermotolerance by activating LlMBF1c and interacting with LlCaM3 in lily (Lilium longiflorum). Horticulture Research, 2021, 8, 36.	6.3	42
4	Alternative Splicing Provides a Mechanism to Regulate LIHSFA3 Function in Response to Heat Stress in Lily. Plant Physiology, 2019, 181, 1651-1667.	4.8	41
5	A Canonical DREB2-Type Transcription Factor in Lily Is Post-translationally Regulated and Mediates Heat Stress Response. Frontiers in Plant Science, 2018, 9, 243.	3.6	36
6	Characterization and Functional Analysis of Transcription Factor LoMYB80 Related to Anther Development in Lily (Lilium Oriental Hybrids). Journal of Plant Growth Regulation, 2015, 34, 545-557.	5.1	26
7	A novel R2R3-MYB transcription factor LIMYB305 from Lilium longiflorum plays a positive role in thermotolerance via activating heat-protective genes. Environmental and Experimental Botany, 2021, 184, 104399.	4.2	24
8	Cytological and Molecular Characteristics of Pollen Abortion in Lily with Dysplastic Tapetum. Horticultural Plant Journal, 2019, 5, 281-294.	5.0	21
9	Involvement of Ca2+ and CaM3 in Regulation of Thermotolerance in Lily (Lilium longiflorum). Plant Molecular Biology Reporter, 2013, 31, 1293-1304.	1.8	15
10	Overexpression of a novel heat-inducible ethylene-responsive factor gene LIERF110 from Lilium longiflorum decreases thermotolerance. Plant Science, 2022, 319, 111246.	3.6	10
11	Analysis of Pollen Allergens in Lily by Transcriptome and Proteome Data. International Journal of Molecular Sciences, 2019, 20, 5892.	4.1	9
12	Strawberry FaNAC2 Enhances Tolerance to Abiotic Stress by Regulating Proline Metabolism. Plants, 2020, 9, 1417.	3.5	8
13	Characterization and functional analysis of LoUDT1, a bHLH transcription factor related to anther development in the lily oriental hybrid Siberia (Lilium spp.). Plant Physiology and Biochemistry, 2021, 166, 1087-1095.	5.8	8
14	The <scp>GATA</scp> factor <scp><i>HANABA TARANU</i></scp> promotes runner formation by regulating axillary bud initiation and outgrowth in cultivated strawberry. Plant Journal, 2022, 110, 1237-1254.	5.7	8
15	A Novel R2R3-MYB Gene LoMYB33 From Lily Is Specifically Expressed in Anthers and Plays a Role in Pollen Development. Frontiers in Plant Science, 2021, 12, 730007.	3.6	7
16	Starch Degradation and Sucrose Accumulation of Lily Bulbs after Cold Storage. International Journal of Molecular Sciences, 2022, 23, 4366.	4.1	7
17	Transcriptome Profiling Unravels a Vital Role of Pectin and Pectinase in Anther Dehiscence in Chrysanthemum. International Journal of Molecular Sciences, 2019, 20, 5865.	4.1	6
18	A Novel Lateral Organ Boundary-domain Factor CmLBD2 Positively Regulates Pollen Development by Activating <i>CmACOS5</i> in <i>Chrysanthemum morifolium</i> . Plant and Cell Physiology, 2021, 62, 1687-1701.	3.1	6

Ze Wu

#	Article	IF	CITATIONS
19	Chrysanthemum embryo development is negatively affected by a novel ERF transcription factor, CmERF12. Journal of Experimental Botany, 2022, 73, 197-212.	4.8	5
20	Transcriptome and Metabolome Analyses Provide Insights into the Stomium Degeneration Mechanism in Lily. International Journal of Molecular Sciences, 2021, 22, 12124.	4.1	5
21	Time-Course Transcriptomic Profiling of Floral Induction in Cultivated Strawberry. International Journal of Molecular Sciences, 2022, 23, 6126.	4.1	5
22	The transcription factor CmLEC1 positively regulates the seed-setting rate in hybridization breeding of chrysanthemum. Horticulture Research, 2021, 8, 191.	6.3	2