Sophien Kamoun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2533411/publications.pdf Version: 2024-02-01

		1457	2617
261	43,493	107	194
papers	citations	h-index	g-index
355	355	355	25270
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects. Systematic Biology, 2006, 55, 595-609.	2.7	2,257
2	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	13.7	1,405
3	Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 2012, 30, 174-178.	9.4	1,087
4	<scp>QTL</scp> â€seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of <scp>DNA</scp> from two bulked populations. Plant Journal, 2013, 74, 174-183.	2.8	1,065
5	Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis. Science, 2006, 313, 1261-1266.	6.0	1,059
6	Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31, 691-693.	9.4	951
7	Genome evolution in filamentous plant pathogens: why bigger can be better. Nature Reviews Microbiology, 2012, 10, 417-430.	13.6	735
8	A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes. Annual Review of Phytopathology, 2006, 44, 41-60.	3.5	706
9	The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16, 413-434.	2.0	695
10	Emerging Concepts in Effector Biology of Plant-Associated Organisms. Molecular Plant-Microbe Interactions, 2009, 22, 115-122.	1.4	631
11	From Guard to Decoy: A New Model for Perception of Plant Pathogen Effectors. Plant Cell, 2008, 20, 2009-2017.	3.1	626
12	Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports, 2017, 7, 482.	1.6	525
13	Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 2013, 9, 39.	1.9	515
14	The two-speed genomes of filamentous pathogens: waltz with plants. Current Opinion in Genetics and Development, 2015, 35, 57-65.	1.5	503
15	Signatures of Adaptation to Obligate Biotrophy in the <i>Hyaloperonospora arabidopsidis</i> Genome. Science, 2010, 330, 1549-1551.	6.0	492
16	A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 2013, 45, 1510-1515.	9.4	472
17	Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 2015, 32, 76-84.	3.3	456
18	Genome Evolution Following Host Jumps in the Irish Potato Famine Pathogen Lineage. Science, 2010, 330, 1540-1543.	6.0	440

#	Article	IF	CITATIONS
19	Differential Recognition of Highly Divergent Downy Mildew Avirulence Gene Alleles by RPP1 Resistance Genes from Two Arabidopsis Lines. Plant Cell, 2005, 17, 1839-1850.	3.1	416
20	An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7766-7771.	3.3	414
21	<i>Phytophthora infestans</i> effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9909-9914.	3.3	412
22	Association Genetics Reveals Three Novel Avirulence Genes from the Rice Blast Fungal Pathogen <i>Magnaporthe oryzae</i> Â Â. Plant Cell, 2009, 21, 1573-1591.	3.1	410
23	The C-terminal half ofPhytophthora infestansRXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death inNicotiana benthamiana. Plant Journal, 2006, 48, 165-176.	2.8	402
24	Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 2010, 11, R73.	13.9	391
25	In Planta Expression Screens of <i>Phytophthora infestans</i> RXLR Effectors Reveal Diverse Phenotypes, Including Activation of the <i>Solanum bulbocastanum</i> Disease Resistance Protein Rpi-blb2. Plant Cell, 2009, 21, 2928-2947.	3.1	376
26	Resistance of Nicotiana benthamiana to Phytophthora infestans Is Mediated by the Recognition of the Elicitor Protein INF1. Plant Cell, 1998, 10, 1413-1425.	3.1	371
27	Understanding and Exploiting Late Blight Resistance in the Age of Effectors. Annual Review of Phytopathology, 2011, 49, 507-531.	3.5	369
28	Effector Genomics Accelerates Discovery and Functional Profiling of Potato Disease Resistance and Phytophthora Infestans Avirulence Genes. PLoS ONE, 2008, 3, e2875.	1.1	361
29	Effector Biology of Plant-Associated Organisms: Concepts and Perspectives. Cold Spring Harbor Symposia on Quantitative Biology, 2012, 77, 235-247.	2.0	355
30	Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology, 2016, 14, 84.	1.7	355
31	The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. ELife, 2013, 2, e00731.	2.8	339
32	EST Mining and Functional Expression Assays Identify Extracellular Effector Proteins From the Plant Pathogen Phytophthora. Genome Research, 2003, 13, 1675-1685.	2.4	333
33	NLR network mediates immunity to diverse plant pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8113-8118.	3.3	330
34	Ancient class of translocated oomycete effectors targets the host nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17421-17426.	3.3	326
35	Genome Analyses of an Aggressive and Invasive Lineage of the Irish Potato Famine Pathogen. PLoS Pathogens, 2012, 8, e1002940.	2.1	321
36	Adaptive Evolution Has Targeted the C-Terminal Domain of the RXLR Effectors of Plant Pathogenic Oomycetes. Plant Cell, 2007, 19, 2349-2369.	3.1	315

#	Article	IF	CITATIONS
37	Molecular Genetics of Pathogenic Oomycetes. Eukaryotic Cell, 2003, 2, 191-199.	3.4	302
38	A Kazal-like Extracellular Serine Protease Inhibitor from Phytophthora infestans Targets the Tomato Pathogenesis-related Protease P69B. Journal of Biological Chemistry, 2004, 279, 26370-26377.	1.6	301
39	Expression of aPhytophthora sojaenecrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant Journal, 2002, 32, 361-373.	2.8	299
40	A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants. Current Biology, 2012, 22, 2242-2246.	1.8	291
41	<i>Phytophthora infestans</i> effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20832-20837.	3.3	285
42	Trafficking arms: oomycete effectors enter host plant cells. Trends in Microbiology, 2006, 14, 8-11.	3.5	278
43	A Phytophthora infestans Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease. Plant Physiology, 2007, 143, 364-377.	2.3	277
44	Groovy times: filamentous pathogen effectors revealed. Current Opinion in Plant Biology, 2007, 10, 358-365.	3.5	274
45	Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15718-15723.	3.3	273
46	MutMap+: Genetic Mapping and Mutant Identification without Crossing in Rice. PLoS ONE, 2013, 8, e68529.	1.1	267
47	MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology, 2015, 33, 445-449.	9.4	265
48	Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen <i>Phytophthora capsici</i> . Molecular Plant-Microbe Interactions, 2012, 25, 1350-1360.	1.4	264
49	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	3.5	263
50	Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1654-1659.	3.3	260
51	Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. ELife, 2015, 4, .	2.8	246
52	Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus. PLoS Genetics, 2014, 10, e1004078.	1.5	238
53	Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi. PLoS ONE, 2012, 7, e29847.	1.1	235
54	Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. triticireveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics, 2013, 14, 270.	1.2	235

#	Article	IF	CITATIONS
55	A Gene Encoding a Protein Elicitor of Phytophthora infestans Is Down-Regulated During Infection of Potato. Molecular Plant-Microbe Interactions, 1997, 10, 13-20.	1.4	233
56	Oomycetes, effectors, and all that jazz. Current Opinion in Plant Biology, 2012, 15, 483-492.	3.5	232
57	How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells?. PLoS Biology, 2014, 12, e1001801.	2.6	232
58	Fungal Effector Protein AVR2 Targets Diversifying Defense-Related Cys Proteases of Tomato. Plant Cell, 2008, 20, 1169-1183.	3.1	230
59	Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nature Plants, 2015, 1, 15034.	4.7	229
60	A Second Kazal-Like Protease Inhibitor from Phytophthora infestans Inhibits and Interacts with the Apoplastic Pathogenesis-Related Protease P69B of Tomato. Plant Physiology, 2005, 138, 1785-1793.	2.3	222
61	The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta, 2000, 210, 853-864.	1.6	217
62	Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Molecular Plant Pathology, 2003, 4, 383-391.	2.0	214
63	Oomycete–plant coevolution: recent advances and future prospects. Current Opinion in Plant Biology, 2010, 13, 427-433.	3.5	204
64	CRISPR Crops: Plant Genome Editing Toward Disease Resistance. Annual Review of Phytopathology, 2018, 56, 479-512.	3.5	197
65	<pre><scp>M</scp>ut<scp>M</scp>apâ€<scp>G</scp>ap: wholeâ€genome resequencing of mutant <scp>F</scp>2 progeny bulk combined with <i>de novo</i>assembly of gap regions identifies the rice blast resistance gene <scp><i>Pii</i></scp>. New Phytologist, 2013, 200, 276-283.</pre>	3.5	196
66	AY-WB Phytoplasma Secretes a Protein That Targets Plant Cell Nuclei. Molecular Plant-Microbe Interactions, 2009, 22, 18-30.	1.4	193
67	Systemic Modulation of Gene Expression in Tomato by Trichoderma hamatum 382. Phytopathology, 2007, 97, 429-437.	1.1	190
68	The Malarial Host-Targeting Signal Is Conserved in the Irish Potato Famine Pathogen. PLoS Pathogens, 2006, 2, e50.	2.1	189
69	An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. ELife, 2016, 5, .	2.8	189
70	Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics, 2010, 11, 637.	1.2	188
71	<i>Phytophthora infestans</i> RXLR Effector PexRD2 Interacts with Host MAPKKKε to Suppress Plant Immune Signaling. Plant Cell, 2014, 26, 1345-1359.	3.1	188
72	NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Current Opinion in Plant Biology, 2019, 50, 121-131.	3.5	187

#	Article	IF	CITATIONS
73	Ten things to know about oomycete effectors. Molecular Plant Pathology, 2009, 10, 795-803.	2.0	185
74	Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biology, 2015, 16, 23.	3.8	185
75	Resistance to oomycetes: a general role for the hypersensitive response?. Trends in Plant Science, 1999, 4, 196-200.	4.3	183
76	Effector Specialization in a Lineage of the Irish Potato Famine Pathogen. Science, 2014, 343, 552-555.	6.0	179
77	Synergistic Interactions of the Plant Cell Death Pathways Induced by Phytophthora infestans Nep1-Like Protein PiNPP1.1 and INF1 Elicitin. Molecular Plant-Microbe Interactions, 2006, 19, 854-863.	1.4	178
78	Structures of Phytophthora RXLR Effector Proteins. Journal of Biological Chemistry, 2011, 286, 35834-35842.	1.6	178
79	Candidate Effector Proteins of the Rust Pathogen <i>Melampsora larici-populina</i> Target Diverse Plant Cell Compartments. Molecular Plant-Microbe Interactions, 2015, 28, 689-700.	1.4	172
80	The Receptor-Like Kinase SERK3/BAK1 Is Required for Basal Resistance against the Late Blight Pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS ONE, 2011, 6, e16608.	1.1	170
81	Internuclear Gene Silencing in Phytophthora infestans. Molecular Cell, 1999, 3, 339-348.	4.5	168
82	An Effector-Targeted Protease Contributes to Defense against <i>Phytophthora infestans</i> and Is under Diversifying Selection in Natural Hosts. Plant Physiology, 2010, 154, 1794-1804.	2.3	166
83	Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	166
84	Qualitative and Quantitative Late Blight Resistance in the Potato Cultivar Sarpo Mira Is Determined by the Perception of Five Distinct RXLR Effectors. Molecular Plant-Microbe Interactions, 2012, 25, 910-919.	1.4	162
85	An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. ELife, 2019, 8, .	2.8	162
86	Large-Scale Gene Discovery in the Oomycete Phytophthora infestans Reveals Likely Components of Phytopathogenicity Shared with True Fungi. Molecular Plant-Microbe Interactions, 2005, 18, 229-243.	1.4	160
87	Initial Assessment of Gene Diversity for the Oomycete Pathogen Phytophthora infestans Based on Expressed Sequences. Fungal Genetics and Biology, 1999, 28, 94-106.	0.9	159
88	Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics, 2016, 17, 370.	1.2	157
89	Sequence Divergent RXLR Effectors Share a Structural Fold Conserved across Plant Pathogenic Oomycete Species. PLoS Pathogens, 2012, 8, e1002400.	2.1	153
90	Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. FEBS Journal, 2000, 267, 5005-5013.	0.2	151

#	Article	IF	CITATIONS
91	Large-Scale Gene Disruption in Magnaporthe oryzae Identifies MC69, a Secreted Protein Required for Infection by Monocot and Dicot Fungal Pathogens. PLoS Pathogens, 2012, 8, e1002711.	2.1	150
92	Cellulose Binding Domains of a Phytophthora Cell Wall Protein Are Novel Pathogen-Associated Molecular Patterns. Plant Cell, 2006, 18, 1766-1777.	3.1	149
93	Receptor networks underpin plant immunity. Science, 2018, 360, 1300-1301.	6.0	149
94	Nonhost resistance to Phytophthora: novel prospects for a classical problem. Current Opinion in Plant Biology, 2001, 4, 295-300.	3.5	148
95	RXLR effectors of plant pathogenic oomycetes. Current Opinion in Microbiology, 2007, 10, 332-338.	2.3	148
96	Extracellular Protein Elicitors from <i>Phytophthora</i> : Host-Specificity and Induction of Resistance to Bacterial and Fungal Phytopathogens. Molecular Plant-Microbe Interactions, 1993, 6, 15.	1.4	144
97	Presence/absence, differential expression and sequence polymorphisms between <i>PiAVR2</i> and <i>PiAVR2â€like</i> in <i>Phytophthora infestans</i> determine virulence on <i>R2</i> plants. New Phytologist, 2011, 191, 763-776.	3.5	142
98	Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14682-14687.	3.3	141
99	Patterns of Diversifying Selection in the Phytotoxin-like scr74 Gene Family of Phytophthora infestans. Molecular Biology and Evolution, 2005, 22, 659-672.	3.5	140
100	Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Methods, 2016, 12, 49.	1.9	137
101	Single Amino Acid Mutations in the Potato Immune Receptor R3a Expand Response to <i>Phytophthora</i> Effectors. Molecular Plant-Microbe Interactions, 2014, 27, 624-637.	1.4	136
102	Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics, 2015, 16, 741.	1.2	135
103	Host Protein BSL1 Associates with <i>Phytophthora infestans</i> RXLR Effector AVR2 and the <i>Solanum demissum</i> Immune Receptor R2 to Mediate Disease Resistance. Plant Cell, 2012, 24, 3420-3434.	3.1	130
104	ATG8 Expansion: A Driver of Selective Autophagy Diversification?. Trends in Plant Science, 2017, 22, 204-214.	4.3	129
105	Rice Exo70 interacts with a fungal effector <i>, </i> <scp>AVR</scp> â€Pii, and is required for <scp>AVR</scp> â€Piiâ€ŧriggered immunity. Plant Journal, 2015, 83, 875-887.	2.8	128
106	nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinformatics, 2018, 19, 122.	1.2	128
107	Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nature Plants, 2018, 4, 576-585.	4.7	127
108	The genome sequence and effector complement of the flax rust pathogen Melampsora lini. Frontiers in Plant Science, 2014, 5, 98.	1.7	126

#	Article	IF	CITATIONS
109	Protein engineering expands the effector recognition profile of a rice NLR immune receptor. ELife, 2019, 8, .	2.8	118
110	The Plant Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustorial Domains and Enhances Susceptibility to <i>Phytophthora infestans</i> Â Â. Plant Physiology, 2014, 165, 1005-1018.	2.3	116
111	<i>Capsicum annuum</i> WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytologist, 2008, 177, 977-989.	3.5	114
112	Emerging oomycete threats to plants and animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150459.	1.8	114
113	Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biology, 2017, 15, 86.	1.7	114
114	A Gene Encoding a Host-Specific Elicitor Protein of <i>Phytophthora parasitica</i> . Molecular Plant-Microbe Interactions, 1993, 6, 573.	1.4	114
115	Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cellular Microbiology, 2012, 14, 682-697.	1.1	111
116	Lessons in Effector and NLR Biology of Plant-Microbe Systems. Molecular Plant-Microbe Interactions, 2018, 31, 34-45.	1.4	109
117	NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death. Planta, 2008, 228, 977-987.	1.6	108
118	Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 705-715.	1.1	108
119	Gene Expression Profiling During Asexual Development of the Late Blight Pathogen <i>Phytophthora infestans</i> Reveals a Highly Dynamic Transcriptome. Molecular Plant-Microbe Interactions, 2008, 21, 433-447.	1.4	105
120	Comparative Genome Analysis Provides Insights into the Evolution and Adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS ONE, 2010, 5, e10224.	1.1	104
121	Rerouting of Plant Late Endocytic Trafficking Toward a Pathogen Interface. Traffic, 2015, 16, 204-226.	1.3	103
122	Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Molecular Breeding, 2004, 14, 21-34.	1.0	101
123	Structure of the Glucanase Inhibitor Protein (GIP) Family from <i>Phytophthora</i> Species Suggests Coevolution with Plant Endo-β-1,3-Glucanases. Molecular Plant-Microbe Interactions, 2008, 21, 820-830.	1.4	101
124	Late Blight of Potato and Tomato in the Genomics Era. Plant Disease, 2005, 89, 692-699.	0.7	99
125	Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE, 2016, 11, e0149035.	1.1	99
126	Regulation of Transcription of Nucleotide-Binding Leucine-Rich Repeat-Encoding Genes SNC1 and RPP4 via H3K4 Trimethylation. Plant Physiology, 2013, 162, 1694-1705.	2.3	93

#	Article	IF	CITATIONS
127	Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. Journal of Experimental Botany, 2009, 60, 1133-1140.	2.4	92
128	Helper <scp>NLR</scp> proteins <scp>NRC</scp> 2a/b and <scp>NRC</scp> 3 but not <scp>NRC</scp> 1 are required for Ptoâ€mediated cell death and resistance in <i>Nicotiana benthamiana</i> . New Phytologist, 2016, 209, 1344-1352.	3.5	92
129	The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Current Opinion in Plant Biology, 2018, 44, 108-116.	3.5	92
130	Active defence responses associated with non-host resistance of Arabidopsis thaliana to the oomycete pathogen Phytophthora infestans. Molecular Plant Pathology, 2003, 4, 487-500.	2.0	90
131	Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative virulence factors. BMC Microbiology, 2005, 5, 46.	1.3	90
132	Common infection strategies of pathogenic eukaryotes. Nature Reviews Microbiology, 2006, 4, 922-931.	13.6	90
133	Purification of Effector–Target Protein Complexes via Transient Expression in Nicotiana benthamiana. Methods in Molecular Biology, 2011, 712, 181-194.	0.4	90
134	Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cellular Microbiology, 2016, 18, 453-465.	1.1	90
135	A high-throughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1-induced cell death signaling and non-host resistance to Pseudomonas cichorii. Plant Journal, 2007, 49, 1030-1040.	2.8	86
136	Incompatible Interactions Between Crucifers and <i>Xanthomonas campestris</i> Involve a Vascular Hypersensitive Response: Role of the <i>hrpX</i> Locus. Molecular Plant-Microbe Interactions, 1992, 5, 22.	1.4	86
137	Nine things to know about elicitins. New Phytologist, 2016, 212, 888-895.	3.5	84
138	Virus-induced silencing of WIPK and SIPK genes reduces resistance to a bacterial pathogen, but has no effect on the INF1-induced hypersensitive response (HR) in Nicotiana benthamiana. Molecular Genetics and Genomics, 2003, 269, 583-591.	1.0	83
139	RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biology, 2021, 19, e3001124.	2.6	81
140	Tomato l2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete <i>Phytophthora infestans</i> in Addition to the Fungus <i>Fusarium oxysporum</i> . Molecular Plant-Microbe Interactions, 2015, 28, 1316-1329.	1.4	80
141	A Novel Class of Elicitin-like Genes from Phytophthora infestans. Molecular Plant-Microbe Interactions, 1997, 10, 1028-1030.	1.4	79
142	Oomycete genomics: new insights and future directions. FEMS Microbiology Letters, 2007, 274, 1-8.	0.7	79
143	Analysis of the Pythium ultimum transcriptome using Sanger and Pyrosequencing approaches. BMC Genomics, 2008, 9, 542.	1.2	78
144	Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2. PLoS ONE, 2015, 10, e0137071.	1.1	78

#	Article	IF	CITATIONS
145	The "sensor domains―of plant NLR proteins: more than decoys?. Frontiers in Plant Science, 2015, 6, 134.	1.7	78
146	The Irish Potato Famine Pathogen Phytophthora infestans Translocates the CRN8 Kinase into Host Plant Cells. PLoS Pathogens, 2012, 8, e1002875.	2.1	77
147	Phenotypic Switching Affecting Chemotaxis, Xanthan Production, and Virulence in <i>Xanthomonas campestris</i> . Applied and Environmental Microbiology, 1990, 56, 3855-3860.	1.4	77
148	Structural Basis of Host Autophagy-related Protein 8 (ATG8) Binding by the Irish Potato Famine Pathogen Effector Protein PexRD54. Journal of Biological Chemistry, 2016, 291, 20270-20282.	1.6	74
149	Does basal PR gene expression in Solanum species contribute to non-specific resistance toPhytophthora infestans ?. Physiological and Molecular Plant Pathology, 2000, 57, 35-42.	1.3	73
150	Mining Herbaria for Plant Pathogen Genomes: Back to the Future. PLoS Pathogens, 2014, 10, e1004028.	2.1	72
151	Functional Divergence of Two Secreted Immune Proteases of Tomato. Current Biology, 2015, 25, 2300-2306.	1.8	72
152	Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell, 2021, 184, 5201-5214.e12.	13.5	72
153	High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance. Plant Journal, 2005, 43, 491-505.	2.8	71
154	An analysis of theCandida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast, 2003, 20, 595-610.	0.8	70
155	A functional genetic assay for nuclear trafficking in plants. Plant Journal, 2007, 50, 149-158.	2.8	70
156	Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biology, 2021, 19, e3001136.	2.6	69
157	Host autophagy machinery is diverted to the pathogen interface to mediate focal defense responses against the Irish potato famine pathogen. ELife, 2018, 7, .	2.8	67
158	The pipg1 gene of the oomycete Phytophthora infestans encodes a fungal-like endopolygalacturonase. Current Genetics, 2002, 40, 385-390.	0.8	66
159	Linking sequence to phenotype in Phytophthora–plant interactions. Trends in Microbiology, 2004, 12, 193-200.	3.5	65
160	Computational and comparative analyses of 150 full-length cDNA sequences from the oomycete plant pathogen Phytophthora infestans. Fungal Genetics and Biology, 2006, 43, 20-33.	0.9	65
161	Distinct Amino Acids of the <i>Phytophthora infestans</i> Effector AVR3a Condition Activation of R3a Hypersensitivity and Suppression of Cell Death. Molecular Plant-Microbe Interactions, 2009, 22, 269-281.	1.4	65
162	From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Genome Biology, 2013, 14, 211.	3.8	64

#	Article	IF	CITATIONS
163	Boosting plant immunity with CRISPR/Cas. Genome Biology, 2015, 16, 254.	3.8	63
164	Potential Role of Elicitins in the Interaction between <i>Phytophthora</i> Species and Tobacco. Applied and Environmental Microbiology, 1994, 60, 1593-1598.	1.4	63
165	A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nature Plants, 2021, 7, 198-208.	4.7	62
166	Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions. Genome Biology, 2018, 19, 181.	3.8	61
167	Overcoming plant blindness in science, education, and society. Plants People Planet, 2019, 1, 169-172.	1.6	58
168	Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data. PLoS ONE, 2013, 8, e75402.	1.1	58
169	INF1 Elicitin Activates Jasmonic Acid―and Ethyleneâ€mediated Signalling Pathways and Induces Resistance to Bacterial Wilt Disease in Tomato. Journal of Phytopathology, 2009, 157, 287-297.	0.5	57
170	Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense. Journal of Biological Chemistry, 2021, 296, 100371.	1.6	57
171	Differences in Intensity and Specificity of Hypersensitive Response Induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans. Molecular Plant-Microbe Interactions, 2005, 18, 183-193.	1.4	56
172	Extracellular proteolytic cascade in tomato activates immune protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17409-17417.	3.3	55
173	Multiple recognition of <scp>RXLR</scp> effectors is associated with nonhost resistance of pepper against <i>Phytophthora infestans</i> . New Phytologist, 2014, 203, 926-938.	3.5	53
174	Protein mislocalization in plant cells using a GFPâ€binding chromobody. Plant Journal, 2009, 60, 744-754.	2.8	51
175	Intraspecific comparative genomics to identify avirulence genes from Phytophthora. New Phytologist, 2003, 159, 63-72.	3.5	50
176	Agroinfection-based high-throughput screening reveals specific recognition of INF elicitins in Solanum. Molecular Plant Pathology, 2006, 7, 499-510.	2.0	50
177	Green fluorescent protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora palmivora. FEMS Microbiology Letters, 1999, 178, 71-80.	0.7	49
178	Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC Biology, 2017, 15, 20.	1.7	48
179	N-terminal Î ² -strand underpins biochemical specialization of an ATG8 isoform. PLoS Biology, 2019, 17, e3000373.	2.6	47
180	The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against <i>Phytophthora infestans</i> . Molecular Plant-Microbe Interactions, 2018, 31, 795-802.	1.4	46

#	Article	IF	CITATIONS
181	Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus. PLoS Genetics, 2021, 17, e1009386.	1.5	46
182	Host-interactor screens of <i>Phytophthora infestans</i> RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Plant Cell, 2021, 33, 1447-1471.	3.1	46
183	Green fluorescent protein (GFP) as a reporter gene for the plant pathogenic oomycetePhytophthora palmivora. FEMS Microbiology Letters, 1999, 178, 71-80.	0.7	45
184	Variation in structure and activity among elicitins from Phytophthora sojae. Molecular Plant Pathology, 2003, 4, 119-124.	2.0	45
185	Deployment of the <i><scp>B</scp>urkholderia glumae</i> type <scp>III</scp> secretion system as an efficient tool for translocating pathogen effectors to monocot cells. Plant Journal, 2013, 74, 701-712.	2.8	45
186	Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus. BMC Biology, 2020, 18, 88.	1.7	45
187	The Fungal Gene Avr9 and the Oomycete Gene inf1 Confer Avirulence to Potato Virus X on Tobacco. Molecular Plant-Microbe Interactions, 1999, 12, 459-462.	1.4	44
188	A Recent Expansion of the RXLR Effector Gene <i>Avrblb2</i> Is Maintained in Global Populations of <i>Phytophthora infestans</i> Indicating Different Contributions to Virulence. Molecular Plant-Microbe Interactions, 2015, 28, 901-912.	1.4	44
189	Arabidopsis late blight: infection of a nonhost plant by <i>Albugo laibachii</i> enables full colonization by <i>Phytophthora infestans</i> . Cellular Microbiology, 2017, 19, e12628.	1.1	44
190	Two-Dimensional Data Binning for the Analysis of Genome Architecture in Filamentous Plant Pathogens and Other Eukaryotes. Methods in Molecular Biology, 2014, 1127, 29-51.	0.4	44
191	<i>Pyricularia graminisâ€ŧritici </i> is not the correct species name for the wheat blast fungus: response to Ceresini <i>etÂal</i> . (MPP 20:2). Molecular Plant Pathology, 2019, 20, 173-179.	2.0	42
192	Gene expression polymorphism underpins evasion of host immunity in an asexual lineage of the Irish potato famine pathogen. BMC Evolutionary Biology, 2018, 18, 93.	3.2	41
193	Agrosuppression: A Bioassay for the Hypersensitive Response Suited to High-Throughput Screening. Molecular Plant-Microbe Interactions, 2003, 16, 7-13.	1.4	40
194	A two disulfide bridge Kazal domain from Phytophthora exhibits stable inhibitory activity against serine proteases of the subtilisin family. BMC Biochemistry, 2005, 6, 15.	4.4	40
195	The plant–pathogen haustorial interface at a glance. Journal of Cell Science, 2020, 133, .	1.2	40
196	Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9613-9620.	3.3	39
197	Highâ€throughput <i>in planta</i> expression screening identifies an ADPâ€ribosylation factor (<i>ARF1</i>) involved in nonâ€host resistance and <i>R</i> geneâ€mediated resistance. Molecular Plant Pathology, 2008, 9, 25-36.	2.0	38
198	Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. ELife, 2021, 10, .	2.8	38

#	Article	IF	CITATIONS
199	Dynamic localization of a helper NLR at the plant–pathogen interface underpins pathogen recognition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
200	Resistance of Nicotiana benthamiana to Phytophthora infestans Is Mediated by the Recognition of the Elicitor Protein INF1. Plant Cell, 1998, 10, 1413.	3.1	35
201	Loss of Production of the Elicitor Protein INF1 in the Clonal Lineage US-1 of Phytophthora infestans. Phytopathology, 1998, 88, 1315-1323.	1.1	35
202	Entomopathogenic nematodes induce components of systemic resistance in plants: Biochemical and molecular evidence. Biological Control, 2009, 51, 102-109.	1.4	34
203	Rapid generation of directed and unmarked deletions inXanthomonas. Molecular Microbiology, 1992, 6, 809-816.	1.2	33
204	An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. ELife, 2021, 10, .	2.8	33
205	A single amino acid polymorphism in a conserved effector of the multihost blast fungus pathogen expands host-target binding spectrum. PLoS Pathogens, 2021, 17, e1009957.	2.1	32
206	The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation. PLoS ONE, 2020, 15, e0238616.	1.1	31
207	Crowdsourcing genomic analyses of ash and ash dieback – power to the people. GigaScience, 2013, 2, 2.	3.3	29
208	Cross-reactivity of a rice NLR immune receptor to distinct effectors from the rice blast pathogen Magnaporthe oryzae provides partial disease resistance. Journal of Biological Chemistry, 2019, 294, 13006-13016.	1.6	29
209	Plant health emergencies demand open science: Tackling a cereal killer on the run. PLoS Biology, 2019, 17, e3000302.	2.6	28
210	Functional diversification gave rise to allelic specialization in a rice NLR immune receptor pair. ELife, 2021, 10, .	2.8	28
211	Genome analysis of the foxtail millet pathogen Sclerospora graminicola reveals the complex effector repertoire of graminicolous downy mildews. BMC Genomics, 2017, 18, 897.	1.2	27
212	Title is missing!. European Journal of Plant Pathology, 1998, 104, 521-525.	0.8	26
213	Major Transcriptome Reprogramming Underlies Floral Mimicry Induced by the Rust Fungus Puccinia monoica in Boechera stricta. PLoS ONE, 2013, 8, e75293.	1.1	25
214	A Straightforward Protocol for Electro-transformation of Phytophthora capsici Zoospores. Methods in Molecular Biology, 2011, 712, 129-135.	0.4	24
215	Ancient Diversification of the Pto Kinase Family Preceded Speciation in Solanum. Molecular Plant-Microbe Interactions, 2001, 14, 996-1005.	1.4	23
216	Cautionary Notes on Use of the MoT3 Diagnostic Assay for <i>Magnaporthe oryzae</i> Wheat and Rice Blast Isolates. Phytopathology, 2019, 109, 504-508.	1.1	23

#	Article	IF	CITATIONS
217	<i>NRC4</i> Gene Cluster Is Not Essential for Bacterial Flagellin-Triggered Immunity. Plant Physiology, 2020, 182, 455-459.	2.3	21
218	Lessons from Fraxinus, a crowd-sourced citizen science game in genomics. ELife, 2015, 4, e07460.	2.8	21
219	Phytophthora functional genomics database (PFGD): functional genomics of phytophthora-plant interactions. Nucleic Acids Research, 2006, 34, D465-D470.	6.5	20
220	A resistosome-activated â€~death switch'. Nature Plants, 2019, 5, 457-458.	4.7	20
221	A Clone Resource of <i>Magnaporthe oryzae</i> Effectors That Share Sequence and Structural Similarities Across Host-Specific Lineages. Molecular Plant-Microbe Interactions, 2020, 33, 1032-1035.	1.4	20
222	Variation in Capsidiol Sensitivity between Phytophthora infestans and Phytophthora capsici Is Consistent with Their Host Range. PLoS ONE, 2014, 9, e107462.	1.1	19
223	The Blast Fungus Decoded: Genomes in Flux. MBio, 2018, 9, .	1.8	19
224	Allelic variants of the NLR protein Rpiâ€chc1 differentially recognize members of the <i>Phytophthora infestans</i> PexRD12/31 effector superfamily through the leucineâ€rich repeat domain. Plant Journal, 2021, 107, 182-197.	2.8	19
225	A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
226	The Secretome of Plant-Associated Fungi and Oomycetes. , 2009, , 173-180.		18
227	Computational analyses of ancient pathogen DNA from herbarium samples: challenges and prospects. Frontiers in Plant Science, 2015, 6, 771.	1.7	18
228	Big data in small places. Nature Biotechnology, 2012, 30, 33-34.	9.4	17
229	Hooked and Cooked: A Fish Killer Genome Exposed. PLoS Genetics, 2013, 9, e1003590.	1.5	16
230	The Microbial Olympics. Nature Reviews Microbiology, 2012, 10, 583-588.	13.6	15
231	Genetic Diversity of Phytophthora infestans (Mont.) de Bary in the Eastern and Western Highlands of Uganda. Journal of Phytopathology, 2002, 150, 541-542.	0.5	13
232	Phytophthora. , 2000, , 237-265.		12
233	<i>In planta</i> Expression of Oomycete and Fungal Genes. , 2007, 354, 35-44.		12
234	Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Signaling and Behavior, 2008, 3, 251-253.	1.2	12

#	Article	IF	CITATIONS
235	Use of a green fluorescent protein marker for studying splash dispersal of sporangia of Phytophthora infestans. European Journal of Plant Pathology, 2005, 112, 391-394.	0.8	11
236	Recent developments in effector biology of filamentous plant pathogens. Cellular Microbiology, 2010, 12, 1015-1015.	1.1	11
237	Class uncorrected errors as misconduct. Nature, 2016, 531, 173-173.	13.7	11
238	Dude, where is my mutant? <i>Nicotiana benthamiana</i> meets forward genetics. New Phytologist, 2019, 221, 607-610.	3.5	11
239	Divergent Evolution of PcF/SCR74 Effectors in Oomycetes Is Associated with Distinct Recognition Patterns in Solanaceous Plants. MBio, 2020, 11, .	1.8	11
240	Genome Editing in Diatoms Using CRISPR-Cas to Induce Precise Bi-allelic Deletions. Bio-protocol, 2017, 7, e2625.	0.2	11
241	A vector system for fast-forward studies of the HOPZ-ACTIVATED RESISTANCE1 (ZAR1) resistosome in the model plant <i>Nicotiana benthamiana</i> . Plant Physiology, 2022, 188, 70-80.	2.3	11
242	New Horizons for Plant Translational Research. PLoS Biology, 2014, 12, e1001880.	2.6	10
243	Oomycetes RXLR Effectors Function as Both Activator and Suppressor of Plant Immunity. Plant Pathology Journal, 2010, 26, 209-215.	0.7	10
244	NLR receptor networks in plants. Essays in Biochemistry, 2022, 66, 541-549.	2.1	10
245	Incorporating prior knowledge improves detection of differences in bacterial growth rate. BMC Systems Biology, 2015, 9, 60.	3.0	9
246	Genome evolution of a nonparasitic secondary heterotroph, the diatom <i>Nitzschia putrida</i> . Science Advances, 2022, 8, eabi5075.	4.7	9
247	Protein–Protein Interaction Assays with Effector–GFP Fusions in Nicotiana benthamiana. Methods in Molecular Biology, 2017, 1659, 85-98.	0.4	8
248	Ric1 , a Phytophthora infestans gene with homology to stress-induced genes. Current Genetics, 1999, 36, 310-315.	0.8	7
249	Plant immunity switched from bacteria to virus. Nature Biotechnology, 2016, 34, 391-392.	9.4	7
250	Letter to the editor. Food and Chemical Toxicology, 2013, 53, 450-453.	1.8	5
251	Pet breeding has a long and colourful history. Nature, 2004, 427, 485-485.	13.7	3
252	A Novel MAPKK Involved in Cell Death and Defense Signaling. Plant Signaling and Behavior, 2007, 2, 396-398.	1.2	3

#	Article	IF	CITATIONS
253	Evolution of Hyaloperonospora effectors: ATR1 effector homologs from sister species of the downy mildew pathogen H. arabidopsidis are not recognised by RPP1WsB. Mycological Progress, 2015, 14, 1.	0.5	3
254	Old fungus, new trick. Nature Microbiology, 2019, 4, 210-211.	5.9	3
255	Genome Sequences of Plant-Associated Rhodococcus sp. Isolates from Tunisia. Microbiology Resource Announcements, 2020, 9, .	0.3	2
256	Fungal pathogenesis: Host modulation every which way. Nature Microbiology, 2016, 1, 16075.	5.9	1
257	Can a biologist fix a smartphone?—Just hack it!. BMC Biology, 2017, 15, 37.	1.7	1
258	Interactions betweenPhytophthora infestans andSolanum. , 0, , 287-302.		1
259	Structure and Function of RXLR Effectors of Plant Pathogenic Oomycetes. , 2008, , 161-171.		1
260	Agricultural Microbes Genome 2: First Glimpses into the Genomes of Plant-Associated Microbes. Plant Cell, 2001, 13, 451.	3.1	0
261	Common threads amid diversity. Current Opinion in Plant Biology, 2008, 11, 357-359.	3.5	0