You Song

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2533300/you-song-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 12,173 91 332 h-index g-index citations papers 6.16 4.8 12,945 350 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
332	A cationic sulfur-hydrocarbon triradical with an excited quartet state <i>Chemical Communications</i> , 2022 ,	5.8	1
331	An Uneven Chain-like Ferromagnetic Copper(II) Coordination Polymer Displaying Metamagnetic Behavior and Long-Range Magnetic Ordering. <i>Magnetochemistry</i> , 2022 , 8, 2	3.1	1
330	Influence of the Different Types of Auxiliary Noncarboxylate Organic Ligands on the Topologies and Magnetic Relaxation Behavior of Zn-Dy Heterometallic Single Molecule Magnets. <i>Inorganic Chemistry</i> , 2021 , 60, 9941-9955	5.1	2
329	Recent advances in 3d-4f magnetic complexes with several types of non-carboxylate organic ligands. <i>Inorganica Chimica Acta</i> , 2021 , 521, 120318	2.7	9
328	Synthesis, crystal structures and magnetic properties of a 1D chain based on trinuclear Cu subunits and a Cu4Dy2 complex. <i>Inorganica Chimica Acta</i> , 2021 , 515, 120053	2.7	О
327	Tuning magnetic anisotropy via terminal ligands along the DyDy orientation in novel centrosymmetric [Dy] single molecule magnets. <i>Dalton Transactions</i> , 2021 , 50, 568-577	4.3	7
326	A high-spin diradical dianion and its bridged chemically switchable single-molecule magnet. <i>Chemical Science</i> , 2021 , 12, 9998-10004	9.4	О
325	Concomitant Photoresponsive Chiroptics and Magnetism in Metal-Organic Frameworks at Room Temperature. <i>Research</i> , 2021 , 2021, 5490482	7.8	6
324	Macrocyclic Chromium(III) Catecholate Complexes. <i>Inorganic Chemistry</i> , 2021 , 60, 4447-4455	5.1	
323	Reversible Switching of Single-Molecule Magnetic Behaviour by Desorption/Adsorption of Solvent Ligand in a New Dy(III)-Based Metal Organic Framework. <i>Frontiers in Chemistry</i> , 2021 , 9, 714851	5	1
322	Manipulation of Molecular Qubits by Isotope Effect on Spin Dynamics. CCS Chemistry, 2021, 3, 2548-255	6 9 .2	3
321	Regulating the distortion degree of the square antiprism coordination geometry in DyNa single ion magnets. <i>CrystEngComm</i> , 2021 , 23, 3175-3184	3.3	3
320	Significantly Enhancing the Single-Molecule-Magnet Performance of a Dinuclear Dy(III) Complex by Utilizing an Asymmetric Auxiliary Organic Ligand. <i>Inorganic Chemistry</i> , 2021 ,	5.1	3
319	Controlling Electron Spin Decoherence in Nd-based Complexes via Symmetry Selection. <i>IScience</i> , 2020 , 23, 100926	6.1	5
318	Synthesis, Crystal Structures and Magnetic Properties of Mononuclear High-Spin Cobalt(II) Complex. <i>Crystals</i> , 2020 , 10, 87	2.3	3
317	Tuning the Single-Molecule Magnetism of Dysprosium Complexes by a Redox-Noninnocent Diborane Ligand. <i>Organometallics</i> , 2020 , 39, 4143-4148	3.8	2
316	Narrow Band Gap Observed in a Molecular Ferroelastic: Ferrocenium Tetrachloroferrate. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3240-3245	16.4	21

315	A capped trigonal prismatic cobalt(ii) complex as a structural archetype for single-ion magnets. <i>Dalton Transactions</i> , 2020 , 49, 2063-2067	4.3	19	
314	Synthesis, crystal structures, HF-EPR, and magnetic properties of six-coordinate transition metal (Co, Ni, and Cu) compounds with a 4-amino-1,2,4-triazole Schiff-base ligand <i>RSC Advances</i> , 2020 , 10, 12833-12840	3.7	2	
313	Structures and paramagnetism of five heterometallic pentanuclear metal strings containing as many as four different metals: NiPtCoPd(tpda)Cl. <i>Dalton Transactions</i> , 2020 , 49, 7299-7303	4.3	4	
312	Optimal diamagnetic dilution concentration for suppressing the dipole-dipole interaction in single-ion magnets. <i>Dalton Transactions</i> , 2020 , 49, 2159-2167	4.3	5	
311	Exploring solvent dependent catecholase activity in transition metal complexes: an experimental and theoretical approach. <i>New Journal of Chemistry</i> , 2020 , 44, 1371-1388	3.6	11	
310	Ferrimagnetic Fe(IV)-Mn(II) staircase chain constructed from Fe(IV) building block. <i>Polyhedron</i> , 2020 , 175, 114243	2.7	2	
309	Investigating the effect of lanthanide radius and diamagnetic linkers on the framework of metallacrown complexes. <i>Dalton Transactions</i> , 2020 , 49, 1955-1962	4.3	9	
308	A Gd@C single-molecule electret. <i>Nature Nanotechnology</i> , 2020 , 15, 1019-1024	28.7	25	
307	Structurally modulated single-ion magnets of mononuclear Ediketone dysprosium(III) complexes. <i>Dalton Transactions</i> , 2020 , 49, 14931-14940	4.3	8	
306	Switchable slow relaxation of magnetization in photochromic dysprosium(III) complexes manipulated by a dithienylethene ligand. <i>New Journal of Chemistry</i> , 2020 , 44, 20129-20136	3.6	3	
305	Modulating the structural topologies and magnetic relaxation behaviour of the Mn D y compounds by using different auxiliary organic ligands. <i>New Journal of Chemistry</i> , 2020 , 44, 16302-16310	3.6	3	
304	Isolable Lanthanide Metal Complexes of a Phosphorus-Centered Radical. <i>Inorganic Chemistry</i> , 2020 , 59, 2111-2115	5.1	11	
303	Single molecule magnet behaviors of ZnLn (Ln = Dy, Tb) complexes with multidentate organic ligands formed by absorption of CO in air through in situ reactions. <i>Dalton Transactions</i> , 2019 , 48, 512-5	2 12 3	31	
302	Hexagonal Bipyramidal Dy(III) Complexes as a Structural Archetype for Single-Molecule Magnets. <i>Inorganic Chemistry</i> , 2019 , 58, 2610-2617	5.1	36	
301	Regulation of magnetic relaxation behavior by replacing 3d transition metal ions in [MDy] complexes containing two different organic chelating ligands. <i>Dalton Transactions</i> , 2019 , 48, 10011-100	12 ⁴ 2 ³	17	
300	The synthesis and magnetic properties of a linear mixed-valence [Ni] in an anthyridine tri-nickel complex. <i>Dalton Transactions</i> , 2019 , 48, 9912-9915	4.3	4	
299	Synthesis, crystal structures and magnetic properties of a series of pentanuclear heterometallic [CuII3LnIII2] (Ln = Ho, Dy, and Gd) complexes containing mixed organic ligands. <i>New Journal of Chemistry</i> , 2019 , 43, 8101-8108	3.6	13	
298	Exploring the Magnetic Interaction of Asymmetric Structures Based on Chiral V Clusters. <i>Inorganic Chemistry</i> , 2019 , 58, 2645-2651	5.1	8	

297	Synthesis, crystal structures and magnetic properties of a series of chair-like heterometallic [FeLn] (Ln = Gd, Dy, Ho, and Er) complexes with mixed organic ligands. <i>Dalton Transactions</i> , 2019 , 48, 13472-13	482	10
296	Photochemically Tuned Magnetic Properties in an Erbium(III)-Based Easy-Plane Single-Molecule Magnet. <i>Inorganic Chemistry</i> , 2019 , 58, 14440-14448	5.1	12
295	Light-controlled efficient photoluminescence based on an europium Ediketonate complex with single-crystal-to-single-crystal [2+2] cycloaddition. <i>Chemical Communications</i> , 2019 , 55, 12873-12876	5.8	10
294	Single-Crystal Study of a Low Spin Co(II) Molecular Qubit: Observation of Anisotropic Rabi Cycles. <i>Inorganic Chemistry</i> , 2019 , 58, 2330-2335	5.1	7
293	Incorporation of Silicon-Oxygen Tetrahedron into Novel High-Nuclearity Nanosized 3d-4f Heterometallic Clusters. <i>Inorganic Chemistry</i> , 2018 , 57, 4799-4802	5.1	18
292	Double-stranded helicates of Ni(II), Co(II), Fe(II) and Zn(II) with oligo-haphthyridylamino ligand: Synthesis, structure and properties. <i>Polyhedron</i> , 2018 , 144, 75-81	2.7	4
291	Slow magnetic relaxation influenced by change of symmetry from ideal C to D in cobalt(ii)-based single-ion magnets. <i>Dalton Transactions</i> , 2018 , 47, 2506-2510	4.3	22
290	Magnetic Anisotropy from Trigonal Prismatic to Trigonal Antiprismatic Co(II) Complexes: Experimental Observation and Theoretical Prediction. <i>Inorganic Chemistry</i> , 2018 , 57, 3903-3912	5.1	29
289	Exploring the Performance Improvement of Magnetocaloric Effect Based Gd-Exclusive Cluster Gd. Journal of the American Chemical Society, 2018 , 140, 11219-11222	16.4	66
288	Important Role of Intermolecular Interaction in Cobalt(II) Single-Ion Magnet from Single Slow Relaxation to Double Slow Relaxation. <i>Inorganic Chemistry</i> , 2018 , 57, 10761-10767	5.1	32
287	A mononuclear five-coordinate Co(ii) single molecule magnet with a spin crossover between the S = 1/2 and 3/2 states. <i>Dalton Transactions</i> , 2018 , 47, 16596-16602	4.3	23
286	Magnetic on-off switching in redox non-innocent ligand bridged binuclear cobalt complexes. <i>Dalton Transactions</i> , 2018 , 47, 17211-17215	4.3	12
285	Field-induced single molecule magnet behavior of a DyIII-NaI one-dimensional chain extended by acetate ions. <i>Inorganic Chemistry Communication</i> , 2018 , 98, 127-131	3.1	12
284	Linear pentanuclear nickel(II) and tetranuclear copper(II) complexes with pyrazine-modulated tripyridyldiamine ligand: Synthesis, structure and properties. <i>Inorganica Chimica Acta</i> , 2018 , 483, 386-39	9 2 .7	2
283	Phthalocyanine supported dinuclear Ln complexes: the solvent-induced change of magnetic properties in dysprosium(iii) analogues. <i>Dalton Transactions</i> , 2017 , 46, 3353-3362	4.3	23
282	Coexistence of long-range ferromagnetic ordering and spin-glass behavior observed in the first inorganicBrganic hybrid 1-D oxalate-bridging nona-MnII sandwiched tungstoantimonate chain. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2043-2055	7.1	33
281	Metal-ion induced ferromagnetic polarization in a mixed-spin system. <i>Dalton Transactions</i> , 2017 , 46, 667	7 4. §67	'6 6
280	One-dimensional coordination polymers based on [Ru2(DMBA)4]2+ units. <i>Inorganica Chimica Acta</i> , 2017 , 468, 105-108	2.7	3

279	1D cerium(III) coordination polymer with pivalate bridges: Synthesis, structure and magnetic properties. <i>Journal of Molecular Structure</i> , 2017 , 1141, 170-175	3.4	4
278	Modulating Single-Molecule Magnetic Behavior of a Dinuclear Erbium(III) Complex by Solvent Exchange. <i>Inorganic Chemistry</i> , 2017 , 56, 336-343	5.1	38
277	A Series of Lanthanide(III)-bpdo-Octacyanotungstate(V) Compounds (bpdo = 4,4?-Bipyridine-N,N?-dioxide) Involving the Structural Transformation from Ion Pair to Three-Dimensional Pillared Layer via a Two-Dimensional Layer. <i>Crystal Growth and Design</i> , 2017 , 17, 652	3.5 23-653	13 0
276	Study of the relationship between magnetic field and dielectric properties in two ferromagnetic complexes. <i>RSC Advances</i> , 2017 , 7, 47913-47919	3.7	6
275	Slow magnetic relaxation in luminescent mononuclear dysprosium(iii) and erbium(iii) pentanitrate complexes with the same LnO coordination geometry. <i>Dalton Transactions</i> , 2017 , 46, 15812-15818	4.3	28
274	The Charge Transfer Approach to Heavier Main-Group Element Radicals in Transition-Metal Complexes. <i>Angewandte Chemie</i> , 2017 , 129, 12915-12919	3.6	6
273	An azide-bridged copper(II) 1D-chain with ferromagnetic interactions: synthesis, structure and magnetic studies. <i>Transition Metal Chemistry</i> , 2017 , 42, 635-641	2.1	4
272	Repairing atomic vacancies in single-layer MoSe2 field-effect transistor and its defect dynamics. <i>Npj Quantum Materials</i> , 2017 , 2,	5	27
271	The Charge Transfer Approach to Heavier Main-Group Element Radicals in Transition-Metal Complexes. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12741-12745	16.4	17
270	Half-Sandwich Metal Carbonyl Complexes as Precursors to Functional Materials: From a Near-Infrared-Absorbing Dye to a Single-Molecule Magnet. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12069-12075	16.4	8
269	Isolable Borane-Based Diradical and Triradical Fused by a Diamagnetic Transition Metal Ion. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17723-17726	16.4	15
268	Magnetic Anisotropy along a Series of Lanthanide Polyoxometalates with Pentagonal Bipyramidal Symmetry. <i>Inorganic Chemistry</i> , 2017 , 56, 7835-7841	5.1	24
267	Lantern-shaped 3d-4f high-nuclearity clusters with magnetocaloric effect. <i>Dalton Transactions</i> , 2017 , 46, 9745-9749	4.3	26
266	Tuning quantum tunnelling of magnetization through 3dIf magnetic interactions: an alternative approach for manipulating single-molecule magnetism. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 114-122	6.8	59
265	Cr(III)-HMC (HMC = 5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane) Alkynyl Complexes: Preparation and Emission Properties. <i>Inorganic Chemistry</i> , 2016 , 55, 8736-43	5.1	17
264	Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate MoxW1ITe2. <i>Physical Review B</i> , 2016 , 94,	3.3	106
263	Thermally controlling the singlet-triplet energy gap of a diradical in the solid state. <i>Chemical Science</i> , 2016 , 7, 6514-6518	9.4	44
262	Water induced spin-crossover behaviour and magneto-structural correlation in octacyanotungstate(iv)-based iron(ii) complexes. <i>Dalton Transactions</i> , 2016 , 45, 18643-18652	4.3	10

261	Chiral heterobimetallic chains from a dicyanideferrite building block including a £conjugated TTF annulated ligand. <i>Dalton Transactions</i> , 2016 , 45, 16575-16584	4.3	6
260	Two novel nickel(II) and cobalt(II) metalorganic frameworks based on a rigid aromatic multicarboxylate ligand: syntheses, structural characterization and magnetic properties. CrystEngComm, 2016, 18, 5386-5392	3.3	6
259	Nona- and undecanuclear nickel phosphonate cages. <i>Inorganica Chimica Acta</i> , 2016 , 439, 77-81	2.7	7
258	Structural Conversion and Magnetic Studies of Low-Dimensional LnIII/MoV/IV(CN)8 (Ln = GdŪu) Systems: From Helical Chain to Trinuclear Cluster. <i>Crystal Growth and Design</i> , 2016 , 16, 1708-1716	3.5	17
257	Thiacalix[4]arene-supported heterodinuclear NiIIInIII complexes: slow magnetic relaxation behavior in the dysprosium analogue. <i>RSC Advances</i> , 2016 , 6, 1143-1150	3.7	9
256	Single-Chain Magnets Based on Octacyanotungstate with the Highest Energy Barriers for Cyanide Compounds. <i>Scientific Reports</i> , 2016 , 6, 24372	4.9	40
255	Discovery of a new type of topological Weyl fermion semimetal state in MoWTe. <i>Nature Communications</i> , 2016 , 7, 13643	17.4	134
254	Slow Magnetic Relaxations in Cobalt(II) Tetranitrate Complexes. Studies of Magnetic Anisotropy by Inelastic Neutron Scattering and High-Frequency and High-Field EPR Spectroscopy. <i>Inorganic Chemistry</i> , 2016 , 55, 12603-12617	5.1	31
253	Ferromagnetic Polarization: The Quantum Picture of Switching On/Off Single-Molecule Magnetism. <i>Inorganic Chemistry</i> , 2016 , 55, 5914-23	5.1	29
252	Two field-induced slow magnetic relaxation processes in a mononuclear Co(ii) complex with a distorted octahedral geometry. <i>Dalton Transactions</i> , 2016 , 45, 9279-84	4.3	48
251	Two unprecedented decanuclear heterometallic [MnMnLn] (Ln = Dy, Tb) complexes displaying relaxation of magnetization. <i>Dalton Transactions</i> , 2016 , 45, 18221-18228	4.3	26
250	Magnetic Bistability in a Discrete Organic Radical. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10092-5	16.4	58
249	Solvent dependent reactivities of di-, tetra- and hexanuclear manganese complexes: syntheses, structures and magnetic properties. <i>Dalton Transactions</i> , 2015 , 44, 6620-9	4.3	22
248	Pentanuclear lanthanide pyramids based on thiacalix[4]arene ligand exhibiting slow magnetic relaxation. <i>Dalton Transactions</i> , 2015 , 44, 15481-90	4.3	21
247	Novel supramolecular compounds based on tetrathiafulvalene tetracarboxylate with the cationic chains and anionic chains: Syntheses, charactarization and magnetic propertises. <i>Inorganic Chemistry Communication</i> , 2015 , 55, 83-87	3.1	4
246	Slow magnetic relaxation in mononuclear seven-coordinate cobalt(II) complexes with easy plane anisotropy. <i>Dalton Transactions</i> , 2015 , 44, 11482-90	4.3	64
245	Four-Coordinate Iron(II) Diaryl Compounds with Monodentate N-Heterocyclic Carbene Ligation: Synthesis, Characterization, and Their Tetrahedral-Square Planar Isomerization in Solution. <i>Inorganic Chemistry</i> , 2015 , 54, 4752-60	5.1	30
244	Syntheses, Structures, and Magnetic Properties of Three Manganese(II)-Octacyanotungstate(V) Bimetallic Compounds with Linear Ligands. <i>Crystal Growth and Design</i> , 2015 , 15, 176-184	3.5	13

Dibenzoylmethanide Ligands. European Journal of Inorganic Chemistry, 2015, 2015, 271-278	2.3	37
Nitrogen analogues of Thiele's hydrocarbon. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1634	-716.4	52
Linear trimers of diruthenium linked by polyyndiyl or phenylenediethynyl bridges: A family of unique electronic wires. <i>Polyhedron</i> , 2015 , 86, 76-80	2.7	9
Nitrogen Analogues of Thiele∄ Hydrocarbon. <i>Angewandte Chemie</i> , 2015 , 127, 1654-1657	3.6	18
A family of 12-azametallacrown-4 structural motif with heterometallic Mn(III) -Ln-Mn(III) -Ln (Ln=Dy, Er, Yb, Tb, Y) alternate arrangement and single-molecule magnet behavior. <i>Chemistry - A European Journal</i> , 2015 , 21, 14478-85	4.8	19
A {Nb6 P2 W12 }-Based Hexameric Manganese Cluster with Single-Molecule Magnet Properties. <i>Chemistry - A European Journal</i> , 2015 , 21, 17683-90	4.8	34
Enhanced quantum coherence in graphene caused by Pd cluster deposition. <i>Applied Physics Letters</i> , 2015 , 106, 023108	3.4	8
Bis(phenothiazine)arene diradicaloids: isolation, characterization and crystal structures. <i>Chemical Communications</i> , 2015 , 51, 11822-5	5.8	35
Electrochemical Synthesis and Magnetic Properties of [Cu9W6]: The Ultimate Member of the Quindecanuclear Octacyanometallate-Based Transition-Metal Cluster?. <i>Inorganic Chemistry</i> , 2015 , 54, 11049-51	5.1	8
Carbontarbon Bond Formation Reactivity of a Four-Coordinate NHC-Supported Iron(II) Phenyl Compound. <i>Organometallics</i> , 2015 , 34, 599-605	3.8	44
Calix[4]arene-supported mononuclear lanthanide single-molecule magnet. <i>Inorganic Chemistry</i> , 2014 , 53, 562-7	5.1	50
Spin-crossover phenomena of the mononuclear Mn(III) complex tuned by metal dithiolene counteranions. <i>Dalton Transactions</i> , 2014 , 43, 3783-91	4.3	16
Size-controlled synthesis and magnetic properties of copper germanate nanorods. Observation of size-induced quenching of the spin-Peierls transition. <i>CrystEngComm</i> , 2014 , 16, 850-857	3.3	8
An unpredictable chain ion-pairing complex {[Cu(terpy)CN]PCQ}n. <i>Inorganic Chemistry Communication</i> , 2014 , 47, 84-86	3.1	
Slow magnetic relaxation in a mononuclear eight-coordinate cobalt(II) complex. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12213-6	16.4	135
Light-induced synthesis of an octacyanometalate-based three-dimensional bimetallic complex [Mn3Mo2][Inorganic Chemistry Communication, 2014 , 45, 79-81	3.1	1
Tuning ground states of bis(triarylamine) dications: from a closed-shell singlet to a diradicaloid with an excited triplet state. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2857-61	16.4	90
Tuning Ground States of Bis(triarylamine) Dications: From a Closed-Shell Singlet to a Diradicaloid with an Excited Triplet State. <i>Angewandte Chemie</i> , 2014 , 126, 2901-2905	3.6	35
	Nitrogen analogues of Thiele's hydrocarbon. Angewandte Chemie - International Edition, 2015, 54, 1634 Linear trimers of diruthenium linked by polyyndiyl or phenylenediethynyl bridges: A family of unique electronic wires. Polyhedron, 2015, 86, 76-80 Nitrogen Analogues of ThieleB Hydrocarbon. Angewandte Chemie, 2015, 127, 1654-1657 A family of 12-azametallacrown-4 structural motif with heterometallic Mn(III) -Ln-Mn(III) -Ln (Ln-Dy, Er, Yb, Tb, Y) alternate arrangement and single-molecule magnet behavior. Chemistry - A European Journal, 2015, 21, 14478-85 A (Nb6 P2 W12)-Based Hexameric Manganese Cluster with Single-Molecule Magnet Properties. Chemistry - A European Journal, 2015, 21, 17633-90 Enhanced quantum coherence in graphene caused by Pd cluster deposition. Applied Physics Letters, 2015, 106, 023108 Bis(phenothiazine) arene diradicaloids: isolation, characterization and crystal structures. Chemical Communications, 2015, 51, 11822-5 Electrochemical Synthesis and Magnetic Properties of [Cu9W6]: The Ultimate Member of the Quindecanuclear Octacyanometallate-Based Transition-Metal Cluster?. Inorganic Chemistry, 2015, 41, 11049-51 Carbontarbon Bond Formation Reactivity of a Four-Coordinate NHC-Supported Iron(II) Phenyl Compound. Organometallics, 2015, 34, 599-605 Calix[4] arene-supported mononuclear lanthanide single-molecule magnet. Inorganic Chemistry, 2014, 53, 562-7 Spin-crossover phenomena of the mononuclear Mn(III) complex tuned by metal dithiolene counteranions. Dalton Transactions, 2014, 43, 3783-91 Size-controlled synthesis and magnetic properties of copper germanate nanorods. Observation of size-induced quenching of the spin-Peierls transition. CrystEngComm, 2014, 16, 850-857 An unpredictable chain ion-pairing complex [[Cu(terpy)CN]PCQ]n. Inorganic Chemistry Communication, 2014, 47, 84-86 Slow magnetic relaxation in a mononuclear eight-coordinate cobalt(II) complex. Journal of the American Chemical Society, 2014, 136, 12213-6 Light-induced synthesis of an octacyanometalate-based three-dimen	Nitrogen analogues of Thiele's hydrocarbon. Angewandte Chemie - International Edition, 2015, 54, 1634-7.6.4. Linear trimers of diruthenium linked by polyyndiyl or phenylenediethynyl bridges: A family of unique electronic wires. Polyhedron, 2015, 86, 76-80 Nitrogen Analogues of ThieleB Hydrocarbon. Angewandte Chemie, 2015, 127, 1654-1657 3,6 A family of 12-azametallacrown-4 structural motif with heterometallic Mn(III) -Ln-Mn(III) -Ln (Ln=Dy, Er, 'Vb, Tb, 'Y) alternate arrangement and single-molecule magnet behavior. Chemistry - A European Journal, 2015, 21, 1478-85 A (Nb6 P2 W12)-Based Hexameric Manganese Cluster with Single-Molecule Magnet Properties. Chemistry - A European Journal, 2015, 21, 1478-85 A (Nb6 P2 W12)-Based Hexameric Manganese Cluster with Single-Molecule Magnet Properties. Chemistry - A European Journal, 2015, 21, 17683-90 Enhanced quantum coherence in graphene caused by Pd cluster deposition. Applied Physics Letters, 2015, 106, 023108 Bis(phenothiazine)arene diradicaloids: isolation, characterization and crystal structures. Chemical Communications, 2015, 51, 11822-5 Electrochemical Synthesis and Magnetic Properties of [Cu9WG]: The Ultimate Member of the Quindecanuclear Octacyanometallate-Based Transition-Metal Cluster?. Inorganic Chemistry, 2015, 54, 11049-51 Sa, 11049-51 Spin-crossover phenomena of the mononuclear Mn(III) complex tuned by metal dithiolene counteranions. Dalton Transactions, 2014, 43, 3783-91 Size-controlled synthesis and magnetic properties of copper germanate nanorods. Observation of size-induced quenching of the spin-Peieris transition. CrystEngComm, 2014, 16, 850-857 An unpredictable chain ion-pairing complex ([Cu(terpy)CN]PCQ)n. Inorganic Chemistry Communication, 2014, 47, 84-86 Slow magnetic relaxation in a mononuclear eight-coordinate cobalt(II) complex. Journal of the American Chemical Society, 2014, 136, 12213-6 Light-induced synthesis of an octacyanometalate-based three-d

Titelbild: Tuning Ground States of Bis(triarylamine) Dications: From a Closed-Shell Singlet to a Diradicaloid with an Excited Triplet State (Angew. Chem. 11/2014). *Angewandte Chemie*, **2014**, 126, 2819³2819

224	Low-voltage organic field-effect transistors based on novel high-lorganometallic lanthanide complex for gate insulating materials. <i>AIP Advances</i> , 2014 , 4, 087140	1.5	5
223	Syntheses, structures and properties of two 2-D layered hybrid organic-inorganic materials based on different V4O12 building units. <i>Dalton Transactions</i> , 2014 , 43, 865-71	4.3	15
222	Synthesis, structure and properties of the first organic amine-templated vanadyl pyrophosphate containing two types of helical chains. <i>Inorganic Chemistry Communication</i> , 2014 , 45, 120-123	3.1	3
221	A mononuclear cobalt(II)-dithienylethene complex showing slow magnetic relaxation and photochromic behavior. <i>Chemical Communications</i> , 2013 , 49, 8863-5	5.8	75
220	Syntheses, crystal structures and properties of dinuclear hydrido-tris(3,5-diphenylpyrazol-1-yl)borate complexes with the SB coupled and dimerized quinoxaline-2,3-dithiolate ligand. <i>Inorganic Chemistry Communication</i> , 2013 , 35, 79-82	3.1	3
219	Ferroelectric switchable behavior through fast reversible de/adsorption of water spirals in a chiral 3D metal-organic framework. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10214-7	16.4	116
218	Syntheses, structures and magnetic properties of two unprecedented hybrid compounds constructed from open Wells-Dawson anions and high-nuclear transition metal clusters. <i>Dalton Transactions</i> , 2013 , 42, 8454-9	4.3	22
217	Family of mixed 3d-4f dimeric 14-metallacrown-5 compounds: syntheses, structures, and magnetic properties. <i>Inorganic Chemistry</i> , 2013 , 52, 10747-55	5.1	88
216	First one-dimensional homochiral stairway-like Cu(II) chains: crystal structures, circular dichroism (CD) spectra, ferroelectricity and antiferromagnetic properties. <i>Dalton Transactions</i> , 2013 , 42, 5036-41	4.3	17
215	Assembling 1D magnetic chain based on octacyanotungstate(V) and [Cu2L2Ln] sub-building units (Ln = Eu, Gd, Tb and Dy). <i>Dalton Transactions</i> , 2013 , 42, 9505-12	4.3	28
214	Heterometallic appended {MMn(III)4} cubanes encapsulated by lacunary polytungstate ligands. <i>Dalton Transactions</i> , 2013 , 42, 342-6	4.3	38
213	Ion-induced diversity in structure and magnetic properties of hexacyanometalatelanthanide bimetallic assemblies. <i>CrystEngComm</i> , 2013 , 15, 10541	3.3	15
212	Controlled synthesis of heterotrimetallic single-chain magnets from anisotropic high-spin 3 d-4 f nodes and paramagnetic spacers. <i>Chemistry - A European Journal</i> , 2013 , 19, 294-303	4.8	74
211	Magnetic properties of two 2D complexes based on 1D chain containing [Fe(bpy)(CN)4]- unit. <i>Dalton Transactions</i> , 2013 , 42, 1116-21	4.3	8
210	Synthesis, structures and magnetic properties of cyano-bridged 3dlf rectangular tetranuclear [FeIII2LnIII2] (Ln = Y, Tb, Dy) compounds containing [FeIII(bpy)(CN)4] [Unit. <i>Polyhedron</i> , 2013 , 66, 212-217	, 2.7	10
209	A family of cubane cobalt and nickel clusters: Syntheses, structures and magnetic properties. <i>Inorganica Chimica Acta</i> , 2013 , 396, 119-125	2.7	74
208	Syntheses, structures, and magnetic properties of seven-coordinate lanthanide porphyrinate or phthalocyaninate complexes with Klūi's tripodal ligand. <i>Inorganic Chemistry</i> , 2013 , 52, 6407-16	5.1	54

(2011-2013)

207	Syntheses, structures, sorption and magnetic properties of copper(II) frameworks with varied topologies. <i>Microporous and Mesoporous Materials</i> , 2013 , 175, 116-124	5.3	11
206	Conversion of tetranuclear Ni complexes from a defect dicubane core to a [Ni4O4] cubane-like core via addition of 2-hydroxymethylpyridine: Synthesis, crystal structures, and magnetic properties. <i>Inorganic Chemistry Communication</i> , 2013 , 35, 86-88	3.1	27
205	Syntheses, structures and magnetic properties of cyano-bridged Sm(III)M(V) (M=Mo, W) assemblies with zigzag chains. <i>Inorganic Chemistry Communication</i> , 2012 , 24, 40-42	3.1	8
204	Chiral cyanide-bridged Cr(III)-Mn(III) heterobimetallic chains based on [(Tp)Cr(CN)3]-: synthesis, structures, and magnetic properties. <i>Inorganic Chemistry</i> , 2012 , 51, 2140-9	5.1	67
203	A single-molecule magnet assembly exhibiting a dielectric transition at 470 K. <i>Chemical Science</i> , 2012 , 3, 3366	9.4	150
202	Field-induced slow magnetic relaxation in chiral seven-coordinated mononuclear lanthanide complexes. <i>Dalton Transactions</i> , 2012 , 41, 13682-90	4.3	48
201	Lanthanide-ion-tuned magnetic properties in a series of three-dimensional cyano-bridged Ln(III)W(V) assemblies. <i>Dalton Transactions</i> , 2012 , 41, 10690-7	4.3	13
200	Hydrothermal Syntheses and Crystal Structures of Two New Vanadium Phosphates. <i>Journal of Cluster Science</i> , 2012 , 23, 177-187	3	5
199	Experimental and theoretical magneto-structural studies on the dicarboxylato-bridged nature of the dicopper(II)-based metalorganic frameworks. <i>Inorganica Chimica Acta</i> , 2012 , 387, 137-144	2.7	7
198	Synthesis, structure, and magnetic properties of three 1D chain complexes based on high-spin metal-cyanide clusters: [Mn(III)6M(III)] (M = Cr, Fe, Co). <i>Inorganic Chemistry</i> , 2011 , 50, 6868-77	5.1	39
197	Novel 3D lanthanide-organic frameworks with an unusual infinite nanosized ribbon [Ln3(BDH)2(DO2)6]+n (Ln = Eu, Gd, Dy): syntheses, structures, luminescence, and magnetic properties. <i>CrystEngComm</i> , 2011 , 13, 2586	3.3	36
196	New high-nuclearity manganese clusters containing mixed chelating ligands: syntheses, crystal structures and magnetochemical characterization. <i>Dalton Transactions</i> , 2011 , 40, 2703-6	4.3	27
195	Two chiral tetradecanuclear hydroxo-lanthanide clusters with luminescent and magnetic properties. <i>CrystEngComm</i> , 2011 , 13, 3643	3.3	40
194	Solvent-modulated slow magnetic relaxation in a two-dimensional compound composed of cobalt(II) single-chain magnets. <i>Chemical Communications</i> , 2011 , 47, 6386-8	5.8	86
193	The importance of an additional water bridge in making the exchange coupling of bis(Ephenoxo) dinickel(II) complexes ferromagnetic. <i>Dalton Transactions</i> , 2011 , 40, 5324-31	4.3	52
192	Synthesis, structure, magnetic properties and DFT calculations of two hydroxo-bridged complexes based on Mn(III)(Schiff-Bases). <i>Dalton Transactions</i> , 2011 , 40, 5999-6006	4.3	19
191	Two octacyanometallate-based Ni(II)W(V) bimetallic assemblies with metamagnetism. <i>Dalton Transactions</i> , 2011 , 40, 5302-6	4.3	21
190	Hexanuclear Fe(III)2Co(III)2M(II)2 (M = Cu, Ni, Mn) clusters based on Klūi's tripodal ligand and tricyanometalates: syntheses, structures and magnetic properties. <i>Dalton Transactions</i> , 2011 , 40, 2204-	1 2 ·3	10

189	Hydrogencyanamido bridged multinuclear copper(II) complexes: from strong antiferromagnetic couplings to weak ferromagnetic couplings. <i>Dalton Transactions</i> , 2011 , 40, 5200-9	4.3	19
188	A novel 9-MC-3 and 15-MC-6 onset stacked metallacrown single-molecule magnet: synthesis and crystal structure. <i>Inorganic Chemistry</i> , 2011 , 50, 2705-7	5.1	40
187	Localized defects closely related with the magnetism of graphite induced by 12C+ ion implantation. Journal of Applied Physics, 2011 , 109, 083933	2.5	3
186	Substituting group induced structural transformation from 1D zigzag chain to 2D grid network in cyano-bridged dimetallic complexes derived from MnIII(Schiff-base) and [CrI(CN)5NO]3ESynthesis, crystal structure and magnetic properties. <i>Polyhedron</i> , 2011 , 30, 3158-3164	2.7	9
185	Synthesis, crystal structure and magnetic properties of an enneanuclear manganese cluster containing mixed chelating ligands. <i>Polyhedron</i> , 2011 , 30, 3206-3210	2.7	15
184	Effect of anionic co-ligands on structure and magnetic coupling of bis(Ephenoxo)-bridged dinuclear copper(II) complexes. <i>Inorganica Chimica Acta</i> , 2011 , 376, 422-427	2.7	18
183	Two new 1D chains of Ni 2 Na 2 heterometallic double half-cubane building units: Synthesis, structures and variable temperature magnetic study. <i>Journal of Chemical Sciences</i> , 2011 , 123, 807-818	1.8	1
182	Superparamagnetic magnetite nanocrystal clusters as potential magnetic carriers for the delivery of platinum anticancer drugs. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11142		56
181	Hydrothermal Synthesis, Crystal Structure and Properties of Two Organic Amine Templated Lanthanide Sulfates. <i>Journal of Chemical Crystallography</i> , 2011 , 41, 1737-1741	0.5	2
180	Two linear undecanickel mixed-valence complexes: increasing the size and the scope of the electronic properties of nickel metal strings. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2045-	8 ^{16.4}	126
179	Back Cover: Two Linear Undecanickel Mixed-Valence Complexes: Increasing the Size and the Scope of the Electronic Properties of Nickel Metal Strings (Angew. Chem. Int. Ed. 9/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2188-2188	16.4	
178	Magnetization relaxation in a three-dimensional ligated cobalt phosphonate containing ferrimagnetic chains. <i>Chemistry - A European Journal</i> , 2011 , 17, 3579-83	4.8	44
177	Tricomponent azide, tetrazolate, and carboxylate cobridging magnetic systems: ferromagnetic coupling, metamagnetism, and single-chain magnetism. <i>Chemistry - A European Journal</i> , 2011 , 17, 13883	1- 1 91	63
176	Octacyanotungstate (V)-based square [W2Mn2] complexes: Effect of intermolecular interaction on molecule-based magnetism. <i>Inorganic Chemistry Communication</i> , 2011 , 14, 56-60	3.1	10
175	Hydrothermal synthesis, structure characterization and catalytic property of a zigzag chain structural cluster compound built on the novel tetra-capped and centered by NiII. <i>Inorganic Chemistry Communication</i> , 2011 , 14, 1314-1317	3.1	11
174	Manganese(II)-carboxylate-pseudohalide systems derived from 1,4-bis(4-carboxylatopyridinium-1-methylene)benzene: structures and magnetism. <i>Dalton Transactions</i> , 2011 , 40, 10966-74	4.3	30
173	Structural and magnetic studies of Schiff base complexes of nickel(II) nitrite: change in crystalline state, ligand rearrangement and a very rare Enitrito-1D:2N:3D' bridging mode. <i>Dalton Transactions</i> , 2011 , 40, 2744-56	4.3	41
172	Synthesis, structural characterization and magnetic behavior of a 2D bi-layer MOF, {[Ni2(C5O5)2(bpe)2][H2O}n (bpe = 1,2-bis(4-pyridyl)ethylene). <i>CrystEngComm</i> , 2011 , 13, 118-123	3.3	7

171	{[VIV14VV4O42(H2O)][Ni(C4N3H13)(C4N3H14)]4(H2O)6}4+: a novel nanosized calix-type polyoxovanadate cation. <i>CrystEngComm</i> , 2011 , 13, 2191	3.3	11
170	Synthesis, structures, and magnetism of copper(II) and manganese(II) coordination polymers with azide and pyridylbenzoates. <i>Inorganic Chemistry</i> , 2011 , 50, 7284-94	5.1	82
169	Synthesis, structures, and magnetic behavior of a series of copper(II) azide polymers of Cu4 building clusters and isolation of a new hemiaminal ether as the metal complex. <i>Inorganic Chemistry</i> , 2011 , 50, 3621-31	5.1	76
168	Syntheses, Structures, and Magnetic Properties of Five Novel Octacyanometallate-Based Lanthanide Complexes with Helical Chains. <i>Crystal Growth and Design</i> , 2011 , 11, 5676-5681	3.5	40
167	Stack pattern of the countercation-modulating magnetic property of low-dimensional [Pt(mnt)]P monoanion spin systems. <i>Inorganic Chemistry</i> , 2011 , 50, 3970-80	5.1	20
166	Enhancing the ferromagnetization of graphite by successive 12C+ ion implantation steps. <i>Carbon</i> , 2011 , 49, 1931-1938	10.4	17
165	In situ synthesis of graphene/cobalt nanocomposites and their magnetic properties. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 711-715	3.1	77
164	Raman study of correlation between defects and ferromagnetism in graphite. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 085001	3	21
163	Ferrimagnetism and abnormal spinlattice coupling in dilute magnetic ferroelectric (Bi 0.46 Na 0.46 Ba 0.08)TiO 3 :Co. <i>Chinese Physics B</i> , 2011 , 20, 027502	1.2	5
162	Slow relaxation processes and single-ion magnetic behaviors in dysprosium-containing complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 969-76	5.1	215
161	Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3](infinity) chains directed organic cations aggregation to Kagom haped tubular architecture. <i>Journal of the American Chemical Society</i> , 2010 , 132, 18-9	16.4	93
160	Structures and properties of porous coordination polymers based on lanthanide carboxylate building units. <i>Inorganic Chemistry</i> , 2010 , 49, 10781-7	5.1	128
159	Mixed azide-carboxylate bridged tri- and tetranuclear Mn(II) clusters in coordination polymers derived from a zwitterionic dicarboxylate ligand: structures and magnetism. <i>Dalton Transactions</i> , 2010 , 39, 7714-22	4.3	39
158	A linear tetranuclear single-molelcule magnet of Mn(II)(2)Mn(III)(2) with the anion of 2-(Hydroxymethyl)pyridine. <i>Inorganic Chemistry</i> , 2010 , 49, 3688-90	5.1	27
157	Synthesis and structural and magnetic characterization of a hexadecanuclear cobalt phosphonate compound. <i>Dalton Transactions</i> , 2010 , 39, 6262-5	4.3	30
156	A two-dimensional metal-organic framework based on a ferromagnetic pentanuclear copper(II). <i>Inorganic Chemistry</i> , 2010 , 49, 1266-70	5.1	73
155	Eicosanuclear cluster [Cu(13)W(7)] of copper-octacyanotungstate bimetallic assembly: synthesis, structure, and magnetic properties. <i>Inorganic Chemistry</i> , 2010 , 49, 3101-3	5.1	30
154	Diruthenium compounds bearing equatorial fc-containing ligands: synthesis and electronic structure. <i>Inorganic Chemistry</i> , 2010 , 49, 11525-31	5.1	27

	Syntheses, structures, and magnetic properties of two kinds of unique heterometallic chains with		
153	mixed-bridging ligands of tricyanometalate and alkoxide. <i>Inorganic Chemistry</i> , 2010 , 49, 9275-82	5.1	17
152	Efficient synthetic strategy to construct three-dimensional 4f-5d networks using neutral two-dimensional layers as building blocks. <i>Inorganic Chemistry</i> , 2010 , 49, 5971-6	5.1	32
151	Manganese(II)-octacyanometallate(V) bimetallic ferrimagnets with T(c) from 41 to 53 K obtained in acidic media. <i>Inorganic Chemistry</i> , 2010 , 49, 7756-63	5.1	34
150	2D double-layered metalfadical complexes: Crystal structures and magnetic properties. <i>Synthetic Metals</i> , 2010 , 160, 839-844	3.6	5
149	Crystal structure and magnetic properties of a nitronyl nitroxide complex {[Co2(NIT4Py)4(fum)2(H2O)4] [(H2O)2} n. <i>Journal of Coordination Chemistry</i> , 2010 , 63, 3198-3206	1.6	4
148	Octacyanotungstate(v)-based square W(2)M(2) (M = Co, Mn) complexes: synthesis, structure and magnetic properties. <i>Dalton Transactions</i> , 2010 , 39, 3489-94	4.3	36
147	Use of 2-pyrimidineamidoxime to generate polynuclear homo-/heterometallic assemblies: synthesis, crystal structures and magnetic study with theoretical investigations on the exchange mechanism. <i>Dalton Transactions</i> , 2010 , 39, 9766-78	4.3	32
146	OrganicInorganic hybrid coordination polymers based on the 5-oxyacetate isophthalic acid (H3OABDC) ligand: syntheses, structures, magnetic and luminescent properties. <i>CrystEngComm</i> , 2010 , 12, 4424	3.3	19
145	Unprecedented three-dimensional 10-connected bct nets based on trinuclear secondary building units and their magnetic behavior. <i>CrystEngComm</i> , 2010 , 12, 4339	3.3	28
144	Linear trimer of diruthenium linked by butadiyn-diyl units: a unique electronic wire. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 954-7	16.4	120
143	Carbonyl compound dependent hydrolysis of mono-condensed Schiff bases: A trinuclear Schiff base complex and a mononuclear mixed-ligand ternary complex of copper(II). <i>Inorganica Chimica Acta</i> , 2010 , 363, 2488-2495	2.7	22
142	Studies on tetranuclear copper (II) complexes of a macrocyclic ligand bearing 2-thiophenoethylamine pendant arms. <i>Journal of Molecular Structure</i> , 2010 , 983, 186-193	3.4	6
141	Synthesis, structure and magnetic property of a cyanamido bridged trinuclear copper complex. <i>Inorganic Chemistry Communication</i> , 2010 , 13, 109-111	3.1	10
140	A defective double cubane cluster complex with 1,1-azido bridges. <i>Inorganic Chemistry Communication</i> , 2010 , 13, 160-162	3.1	16
139	A tetranuclear copper(II) complex: crystal structure, assembly, EPR, electrochemistry and magnetism. <i>Journal of Coordination Chemistry</i> , 2009 , 62, 655-664	1.6	5
138	Diamond- and graphite-like octacyanometalate-based polymers induced by metal ions. <i>Chemistry - A European Journal</i> , 2009 , 15, 7648-55	4.8	23
137	Two bimetallic W(IV)-Mn(II) complexes based on octacyanometallates: structures and magnetic properties. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 1801-1807		10
	Syntheses, structures, and magnetic properties of heterobimetallic Fe2IIIMII (M = Cu, Mn) chains	2.7	9

(2008-2009)

135	Crystal structure, magnetic property and DFT analysis for a bis(tetracyanoquinodimethane)zinc(II) complex. <i>Polyhedron</i> , 2009 , 28, 1888-1892	2.7	3
134	A new two-dimensional manganese(II) coordination polymer with alternating double end-on and single end-to-end azido bridges: Crystal structure and magnetic properties. <i>Inorganic Chemistry Communication</i> , 2009 , 12, 8-10	3.1	14
133	A novel 2D copper(II) coordination polymer with bidentate coligands and alternating double EO-and single EE-azido bridges. <i>Inorganic Chemistry Communication</i> , 2009 , 12, 959-963	3.1	13
132	Synthesis, crystal structure and magnetic properties of one-dimensional cyano-bridged bimetallic complex of [Mn(Me2-bipy)2]3[W(CN)8]2[9H2O. <i>Inorganic Chemistry Communication</i> , 2009 , 12, 1179-118	1 ^{3.1}	6
131	Room-temperature ferromagnetism of graphene. <i>Nano Letters</i> , 2009 , 9, 220-4	11.5	533
130	Observation of magnetic bistability in polymorphs of the [Ni(dmit)(2)](-) complexes. <i>Inorganic Chemistry</i> , 2009 , 48, 9623-30	5.1	34
129	Two spin-peierls-like compounds exhibiting divergent structural features, lattice compression, and expansion in the low-temperature phase. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 8278-83	3.4	26
128	Mixed-valent manganese phosphonate clusters prepared under microwave-assisted and ambient conditions. <i>Dalton Transactions</i> , 2009 , 5029-34	4.3	18
127	Co(II) molecular square with single-molecule magnet properties. <i>Inorganic Chemistry</i> , 2009 , 48, 854-60	5.1	73
126	Microwave-assisted synthesis, crystal structure and properties of a disc-like heptanuclear Co(II) cluster and a heterometallic cubanic Co(II) cluster. <i>CrystEngComm</i> , 2009 , 11, 865	3.3	97
125	A purely lanthanide-based complex exhibiting ferromagnetic coupling and slow magnetic relaxation behavior. <i>Inorganic Chemistry</i> , 2009 , 48, 3493-5	5.1	122
124	Hexamine copper(II) coordination polymers: synthesis, structure and magnetic properties. CrystEngComm, 2009 , 11, 671	3.3	19
123	Metal complexes with N-(2-pyridylmethyl)iminodiacetate: from discrete polynuclear compounds to 1D coordination polymers. <i>Dalton Transactions</i> , 2009 , 5290-9	4.3	29
122	Novel manganese(II) and cobalt(II) 3D polymers with mixed cyanate and carboxylate bridges: crystal structure and magnetic properties. <i>Dalton Transactions</i> , 2009 , 9854-9	4.3	32
121	Co(II) and Cr(III) complexes of formate-formamide mixed ligands: synthesis, structures, single crystal-to-single crystal transformation and magnetic behaviour. <i>Dalton Transactions</i> , 2009 , 10343-52	4.3	15
120	From metalloligand to interpenetrating channels: synthesis, characterization, and properties of a 2p-3d-4f heterometallic coordination polymer {[Na5Cu8Sm4(NTA)8(ClO4)8(H2O)22] x ClO4 x 8 H2O}n. <i>Inorganic Chemistry</i> , 2009 , 48, 6326-8	5.1	52
119	Syntheses, structures, photoluminescence, and magnetic properties of phenanthrene-based carboxylic acid coordination polymers. <i>Inorganic Chemistry</i> , 2008 , 47, 5162-8	5.1	42
118	Unprecedented Nai-Cuii-Lniii heterometallic coordination polymers based on 3,5-pyrazoledicarboxylate with both infinite cationic and anionic chains. <i>Dalton Transactions</i> , 2008 , 558	8 -9 3	38

117	Syntheses, structures, photoluminescence, and magnetic properties of nanoporous 3D lanthanide coordination polymers with 4,4?-biphenyldicarboxylate ligand. <i>CrystEngComm</i> , 2008 , 10, 1237	3.3	65
116	Synthesis of an open-framework copper-germanium phosphate [Cu(H2O)2(OH)]2Ge(PO4)2. <i>Chemical Communications</i> , 2008 , 3145-7	5.8	14
115	Large-Scale Controlled Synthesis of FeCo Nanocubes and Microcages by Wet Chemistry. <i>Chemistry of Materials</i> , 2008 , 20, 6248-6253	9.6	114
114	3D coordination metal-organic frameworks of octacyanometalate bridging between Cu4 magnetic units. <i>Dalton Transactions</i> , 2008 , 2103-6	4.3	24
113	Synthesis, crystal structure, electrochemical and magnetic properties of dinuclear complexes with strong electron-drawing groups in the diphenoxo-tetraaza macrocyclic ligand. <i>Journal of Coordination Chemistry</i> , 2008 , 61, 1412-1422	1.6	13
112	Tetranuclear clusters containing a CrIII-doped MnIII4O2 core: syntheses, structures, and magnetic properties. <i>Inorganic Chemistry</i> , 2008 , 47, 4536-44	5.1	40
111	Structures and magnetic properties of ferromagnetic coupling 2D Ln-M heterometallic coordination polymers (Ln = Ho, Er; M = Mn, Zn). <i>Inorganic Chemistry</i> , 2008 , 47, 11057-61	5.1	56
110	Hydrothermal synthesis, structures, and physical properties of four new flexible multicarboxylate ligands-based compounds. <i>Inorganic Chemistry</i> , 2008 , 47, 9528-36	5.1	112
109	A thiophenopolyamine Cu(II) complex fixed by atmospheric carbon dioxide: synthesis, structure and properties. <i>Journal of Coordination Chemistry</i> , 2008 , 61, 1973-1982	1.6	7
108	Structures and magnetic properties of two new heterospin complexes involving nitroxide radicals and oxamido-bridged copper(II). <i>Journal of Coordination Chemistry</i> , 2008 , 61, 294-301	1.6	
107	Synthesis, crystal structure and properties of two 1D nano-chain coordination polymers constructed by lanthanide with pyridine-3,4-dicarboxylic acid and 1,10-phenanthroline. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 1017-1024	3.3	30
106	Synthesis, crystal structure and magnetic characterization of a novel linear trinuclear copper(II) complex bridged by phenoxy and benzyloxy oxygen atoms. <i>Transition Metal Chemistry</i> , 2008 , 33, 55-60	2.1	4
105	Ferromagnetic Coupling in Trinuclear, Partial Cubane Cull Complexes with a B-OH Core: Magnetostructural Correlations. <i>Chemistry - A European Journal</i> , 2008 , 14, 1377-1377	4.8	
104	Syntheses, Structures, and Electrochemical and Magnetic Properties of Rectangular Heterobimetallic Clusters Based on Tricyanometallic Building Blocks. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 717-727	2.3	43
103	Two Hexanickel-Substituted Keggin-Type Germanotungstates. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 3809-3819	2.3	39
102	Tunable Magnetism in Carbon-Ion-Implanted Highly Oriented Pyrolytic Graphite. <i>Advanced Materials</i> , 2008 , 20, 4679-4683	24	95
101	Organic radical molecular solids based on [(TCNQ)n][(n=1 or 2): Syntheses, crystal structures, magnetic properties and DFT analyses. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 2445-2452	3.9	5
100	Three green luminescent cadmium complexes containing 8-aminoquinoline ligands: Syntheses, crystal structures, emission spectra and DFT calculations. <i>Journal of Luminescence</i> , 2008 , 128, 1665-167	2 ^{3.8}	36

(2007-2008)

99	A 2D Cull complex containing ferromagnetically coupled 1D chain with threefold bridging ligands. <i>Inorganic Chemistry Communication</i> , 2008 , 11, 207-210	3.1	30
98	A tricobalt(II) coordination polymer incorporating in situ generated 5-methyltetrazolate ligands. <i>Inorganic Chemistry Communication</i> , 2008 , 11, 572-575	3.1	20
97	A novel microporous hydrogen-bonding framework constructed with tetrathiafulvalene tetracarboxylate ligand: Synthesis, structure and magnetic properties. <i>Inorganic Chemistry Communication</i> , 2008 , 11, 945-947	3.1	15
96	Synthesis, crystal structure and magnetic properties of 1D chain Cu(II) complex with the single-Ethloro bridging. <i>Inorganic Chemistry Communication</i> , 2008 , 11, 1100-1102	3.1	9
95	Synthesis, structure and magnetic property of Ephenoxo-Eacetato-bis(I2-acetato)dicobalt(II, II) complexes. <i>Inorganica Chimica Acta</i> , 2008 , 361, 5-8	2.7	9
94	Nature of the LnIIIIIoII magnetic interactions in compounds [Ln2Co3(C5H4NPO3)6] [14H2O with open-framework structures. <i>Inorganica Chimica Acta</i> , 2008 , 361, 1363-1371	2.7	21
93	Two trinuclear copper(II)-octacyanometalate(IV) bimetallic complexes coordinated with chiral ligands. <i>Journal of Molecular Structure</i> , 2008 , 875, 198-204	3.4	12
92	Metal complexes formed by metal-assisted solvolysis of di-pyridylketone azine: structures and magnetic properties. <i>Dalton Transactions</i> , 2007 , 1838-45	4.3	21
91	A new quasi-1D spin system with spin transition exhibiting novel CNpi interactions. <i>Inorganic Chemistry</i> , 2007 , 46, 8102-4	5.1	21
90	Synthesis and magnetic properties of a highly conducting neutral nickel complex with a highly conjugated tetrathiafulvalenedithiolate ligand. <i>Inorganic Chemistry</i> , 2007 , 46, 6837-9	5.1	36
89	Tridecanuclear and docosanuclear manganese phosphonate clusters with slow magnetic relaxation. <i>Inorganic Chemistry</i> , 2007 , 46, 5459-61	5.1	57
88	Self-assembly of a Mn9 nanoscopic mixed-valent cluster: synthesis, crystal structure, and magnetic behavior. <i>Inorganic Chemistry</i> , 2007 , 46, 9736-42	5.1	38
87	Octacyanotungstate(V)-based magnetic complex consisting of dimeric Mn(2) and tetrameric Mn(2)W(2). <i>Inorganic Chemistry</i> , 2007 , 46, 10990-5	5.1	40
86	Novel Alternating Ferro-Ferromagnetic Two-Dimensional (4,4) and Photoluminescent Three-Dimensional Interpenetrating PtS-Type Coordination Networks Constructed from a New Flexible Tripodal Ligand as a Four-Connected Node. <i>Crystal Growth and Design</i> , 2007 , 7, 747-754	3.5	100
85	Self-assembly and anion-exchange properties of a discrete cage and 3D coordination networks based on cage structures. <i>Chemistry - A European Journal</i> , 2007 , 13, 8131-8	4.8	88
84	Giant polyniobate clusters based on [Nb7O22]9- units derived from a Nb6O19 precursor. <i>Chemistry - A European Journal</i> , 2007 , 13, 8739-48	4.8	170
83	Ferromagnetic coupling in trinuclear, partial cubane Cu(II) complexes with a micro(3)-OH core: magnetostructural correlations. <i>Chemistry - A European Journal</i> , 2007 , 13, 9297-309	4.8	67
82	Molecule-based ferroelectric thin films: mononuclear lanthanide enantiomers displaying room-temperature ferroelectric and dielectric properties. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 6820-3	16.4	90

81	Single-Crystal Structure and Magnetic Behavior of a Molecule-Based Ferrimagnet Mn[Mn0.2Cr0.8(CN)6][4H2O. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 1698-1702	2.3	7
80	Controllable synthesis of CoO nanosheets and their magnetic properties. <i>ChemPhysChem</i> , 2007 , 8, 209	1-52	27
79	Assembly, structure and magnetic property of one cyano- and oxamidato-bridged mixed valence Cul/Cull complex. <i>Inorganic Chemistry Communication</i> , 2007 , 10, 1019-1022	3.1	4
78	Synthesis, crystal structures and triboluminescence of a pair of Eu(III)-based enantiomers. <i>Polyhedron</i> , 2007 , 26, 5257-5262	2.7	30
77	Two New Three-Dimensional Porous Polyoxometalates with Typical ACO Topological Open Frameworks: {[Cu4V13IVV5VO42(NO3)(C3H10N2)8] 1 0H2O}n and {[Cu4V12IVV6VO42(SO4)(C3H10N2)8] 1 0H2O}n. Crystal Growth and Design, 2007, 7, 925-929	3.5	42
76	Synthesis, crystal structure and magnetic property of the novel dinuclear nickel(II) complex with 4-(p-methoxyphenyl)-3,5-bis(pyridine-2-yl)-1,2,4-triazole. <i>Transition Metal Chemistry</i> , 2007 , 32, 711-715	2.1	21
75	Magnetic interactions in a new heterospin complex involving nitroxide radical and oxamido-bridged copper(II). <i>Journal of Coordination Chemistry</i> , 2007 , 60, 929-936	1.6	1
74	Chiral molecular ferromagnets based on copper(II) polymers with end-on azido bridges. <i>Inorganic Chemistry</i> , 2007 , 46, 9522-4	5.1	68
73	Unusual magnetic transition in a new 1D molecular solid [1-(4?-iodobenzyl)pyridinium][Ni(mnt)2](). <i>Solid State Sciences</i> , 2006 , 8, 520-525	3.4	3
72	A sodalite-like framework based on octacyanomolybdate and neodymium with guest methanol molecules and neodymium octahydrate ions. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 3287	- J -6-4	83
71	Luminescent Open-Framework Antiferromagnet [Hydrothermal Syntheses, Structures, and Luminescent and Magnetic Properties of Two Novel Coordination Polymers: [Zn(pdoa)(bipy)]n and {[Mn(pdoa)(bipy)](bipy)}n [pdoa = 2,2?-(1,3-phenylenedioxy)bis(acetate); bipy = 4,4?-bipyridine].	2.3	37
70	European Journal of Inorganic Chemistry, 2006 , 2006, 3659-3666 A Sodalite-like Framework Based on Octacyanomolybdate and Neodymium with Guest Methanol Molecules and Neodymium Octahydrate Ions. <i>Angewandte Chemie</i> , 2006 , 118, 3365-3369	3.6	7
69	Synthesis, structures and magnetic properties of two copper(II) complexes with pyrazole and pivalate ligands. <i>Journal of Coordination Chemistry</i> , 2006 , 59, 147-156	1.6	16
68	Syntheses, Structures, and Properties of Two Three-Dimensional Octacyanometalate-Based Polymers: Cs2Cu3[W(CN)8]2[4NH3[4H2O and Cu2[Mo(CN)8][8NH3. <i>Crystal Growth and Design</i> , 2006 , 6, 2457-2462	3.5	26
67	Dinuclear and layered copper 2-pyridylphosphonates with weak ferromagnetism observed in layer compound Cu(C5H4NPO3). <i>Dalton Transactions</i> , 2006 , 3228-35	4.3	34
66	A supramolecular assembly of {Fe10} molecular wheels with tubular structures. <i>CrystEngComm</i> , 2006 , 8, 384	3.3	13
65	Weak antiferromagnetic coupling for novel linear hexanuclear nickel(II) string complexes (Ni6 12+) and partial metal-metal bonds in their one-electron reduction products (Ni6 11+). <i>Dalton Transactions</i> , 2006 , 3249-56	4.3	52
64	Tuning the Framework Formation of Ni(II) Complexes by Controlling the Hydrolysis of 2,2ß,3£Thiodiphthalic Dianhydride: Syntheses, Crystal Structures, and Physical Properties. <i>Crystal Growth and Design</i> , 2006 , 6, 2369-2375	3.5	31

(2005-2006)

63	Syntheses, structures, near-infrared and visible luminescence, and magnetic properties of lanthanide-organic frameworks with an imidazole-containing flexible ligand. <i>Inorganic Chemistry</i> , 2006 , 45, 2896-902	5.1	209
62	Symmetry-based magnetic anisotropy in the trigonal bipyramidal cluster [Tp2(Me3tacn)3Cu3Fe2(CN)6]4+. <i>Journal of the American Chemical Society</i> , 2006 , 128, 7162-3	16.4	145
61	Cadmium(II) and copper(II) complexes with imidazole-containing tripodal polyamine ligands: pH and anion effects on carbon dioxide fixation and assembling. <i>Inorganic Chemistry</i> , 2006 , 45, 8098-107	5.1	44
60	Synthesis, crystal structures, and magnetic properties of cyano-bridged heterobimetallic chains based on [(Tp)Fe(CN)3] <i>Inorganic Chemistry</i> , 2006 , 45, 8942-9	5.1	87
59	Syntheses, structures, and magnetic properties of cyano-bridged heterobimetallic complexes based on [Fe(bpca)(CN)3] <i>Inorganic Chemistry</i> , 2006 , 45, 582-90	5.1	50
58	Chiral molecule-based ferrimagnets with helical structures. <i>Inorganic Chemistry</i> , 2006 , 45, 7032-4	5.1	88
57	Dodecanuclear manganese(III) phosphonates with cage structures. <i>Inorganic Chemistry</i> , 2006 , 45, 59-65	5.1	73
56	An iron(III) phosphonate cluster containing a nonanuclear ring. Chemical Communications, 2006, 1745-7	5.8	92
55	Cyano-bridged pentanuclear Fe(III)3M(II)2 (M = Ni, Co, Fe) clusters: synthesis, structures, and magnetic properties. <i>Inorganic Chemistry</i> , 2006 , 45, 8895-901	5.1	61
54	Syntheses, structure and magnetic properties of oxamido-bridged trinuclear CuMfu macrocyclic complexes (M=Cu, Co and Mn). <i>Inorganic Chemistry Communication</i> , 2006 , 9, 1015-1018	3.1	11
53	Unusual magnetic property and theoretical analysis of 1D molecular solid [1-(4?-iodobenzyl)-4-aminopyridinium][Ni(mnt)2] (mnt2日maleonitriledithiolate). <i>Chemical Physics Letters</i> , 2006 , 419, 351-355	2.5	33
52	A novel 1D coordination polymer based on rhombus [Cu4O4] building block: Synthesis, crystal structure and magnetic properties. <i>Journal of Molecular Structure</i> , 2006 , 794, 154-159	3.4	5
51	Syntheses, crystal structures, and magnetic properties of Ni(mnt)2-based molecular solids containing substituted isoquinolinium. <i>Inorganica Chimica Acta</i> , 2006 , 359, 3927-3933	2.7	24
50	Syntheses, structures and magnetic properties of two new water bridged dinuclear nickel(II) complexes containing derivatives of 1,2,4-triazole and pivalate ligands. <i>Polyhedron</i> , 2006 , 25, 2426-2432	2·7	14
49	Synthesis, structure and magnetic properties of a 2D cyano-bridged mixed-valence Cull assembly containing ladder-like chain. <i>Journal of Molecular Structure</i> , 2006 , 788, 206-210	3.4	5
48	Synthesis, structure and magnetic properties of a 2D cyano-bridged mixed-valence CullCu2l assembly containing ladder-like chain. <i>Journal of Molecular Structure</i> , 2006 , 796, 36-40	3.4	4
47	Syntheses, structures, and magnetic properties of unusual nonlinear polynuclear copper(II) complexes containing derivatives of 1,2,4-triazole and pivalate ligands. <i>Inorganic Chemistry</i> , 2005 , 44, 8011-22	5.1	99
46	Synthesis and structural characterization of a nonplanar neutral [36]metallacrown-12 nickel compound [Ni(C13H9N3O2)(CH3OH)]12. <i>Inorganic Chemistry</i> , 2005 , 44, 5972-4	5.1	59

45	Syntheses, crystal structures, and magnetic properties of novel manganese(II) complexes with flexible tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene. <i>Inorganic Chemistry</i> , 2005 , 44, 3330-6	5.1	111
44	Synthesis, crystal structure and magnetic susceptibility of a novel binuclear complex: [Cu2(phen)2(4,4?-dpy)3(OH)2][2NO3[5.5H2O. <i>Journal of Coordination Chemistry</i> , 2005 , 58, 1139-1144	1.6	4
43	Synthesis and characterization of two metal phosphonates with 3D structures: CuI2CuII[(3-C5H4N)CH(OH)PO3]2 and Zn[(3-C5H4N)CH(OH)PO3]. <i>New Journal of Chemistry</i> , 2005 , 29, 721	3.6	23
42	Syntheses, crystal structures and properties of novel copper(II) complexes obtained by reactions of copper(II) sulfate pentahydrate with tripodal ligands. <i>Dalton Transactions</i> , 2005 , 1509-17	4.3	42
41	Octacyanometallate-based single-molecule magnets: Co(II)9M(V)6 (M = W, Mo). <i>Journal of the American Chemical Society</i> , 2005 , 127, 3708-9	16.4	256
40	Syntheses, structures, and magnetic properties of mixed-valent diruthenium(II,III) diphosphonates with discrete and one-dimensional structures. <i>Inorganic Chemistry</i> , 2005 , 44, 4309-14	5.1	51
39	One-dimensional azido-bridged chiral metal complexes with ferromagnetic or antiferromagnetic interactions: syntheses, structures, and magnetic studies. <i>Inorganic Chemistry</i> , 2005 , 44, 9039-45	5.1	79
38	Three-, two-, and one-dimensional metal phosphonates based on [hydroxy(4-pyridyl)methyl]phosphonate: M{(4-C5H4N)CH(OH)PO3}(H2O) (M = Ni, Cd) and Gd{(4-C5H4N)CH(OH)P(OH)O2}3.6H2O. <i>Inorganic Chemistry</i> , 2005 , 44, 3599-604	5.1	66
37	Molecular spin ladders self-assembly from [Ni(dmit)2][building blocks: Syntheses, structures and magnetic properties. <i>Polyhedron</i> , 2005 , 24, 2269-2273	2.7	13
36	Structures and magnetic properties of dicopper(II) and dinickel(II) complexes with end-on azido bridges. <i>Inorganica Chimica Acta</i> , 2005 , 358, 1963-1969	2.7	44
35	Two cyano-bridged heterotrinuclear complexes built from [(Tp)Fe(CN)3][[Tp = hydrotris(pyrazolyl)borate): synthesis, crystal structures and magnetic properties. <i>Inorganica Chimica Acta</i> , 2005 , 358, 2101-2106	2.7	32
34	Syntheses, structure and properties of chiral copper(II) complexes with end-on azide bridge and chiral-bipyridine ligand. <i>Inorganica Chimica Acta</i> , 2005 , 358, 2565-2570	2.7	23
33	Syntheses, crystal structures, and magnetic properties of two new 1D molecular solids based on Ni(mnt)2 ion. <i>Inorganica Chimica Acta</i> , 2005 , 358, 2680-2686	2.7	30
32	Long-range superexchanged magnetic interaction observed in heterometallic complex: {[FeII(Tpms)(CN)3][MnII(H2O)2(DMF)2]}[DMF. <i>Inorganica Chimica Acta</i> , 2005 , 358, 4057-4061	2.7	9
31	Synthesis, structure and property of copper(II) complex with macrocyclic multidentate ligand. <i>Inorganic Chemistry Communication</i> , 2005 , 8, 186-189	3.1	3
30	One-dimensional structure and long-range antiferromagnetic behaviour of manganese (II) oxalate trihydrate: {[Mn(Ebx)(H2O)2] []H2O}n. <i>Inorganic Chemistry Communication</i> , 2005 , 8, 732-736	3.1	25
29	Three-Dimensional Lanthanoid-Containing Coordination Frameworks: Structure, Magnetic and Fluorescent Properties. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 766-772	2.3	32
28	Novel 1-D Chains Constructed of Rings Which Include Six Metal Atoms [M2Au4] (M = Ni, Zn) with Aurophilic Interactions: Structure, Magnetic, and Spectral Studies. <i>Helvetica Chimica Acta</i> , 2005 , 88, 300	00 ² 301	o ⁴

(2001-2005)

27	Synthesis, Crystal Structure and Properties of Two Macrocyclic Dinuclear Complexes. <i>Transition Metal Chemistry</i> , 2005 , 30, 1020-1026	2.1	16
26	One-dimensional Diamagnetic-metal Nitronyl Nitroxide Radical Complexes with Dicyanoargentate(I) Bridges: M(NIT4Py)2[Ag(CN)2]2 (M= Zn, Cd). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005 , 631, 1702-1705	1.3	11
25	Ferromagnetic interactions in a Zn(II)Bitronyl nitroxide complex with dicyanoaurate(I) bridges. <i>Journal of Coordination Chemistry</i> , 2005 , 58, 1695-1702	1.6	7
24	Three-dimensional five-connected coordination polymer [M2(C3H2O4)2(H2O)2(\(\bar{\mathbb{Q}}\)-hmt)]n with 4466 topologies (M=Zn, Cu; hmt=hexamethylenetetramine). <i>Journal of Solid State Chemistry</i> , 2004 , 177, 4701-4705	3.3	36
23	Heterobimetallic Complexes Based on [(Tp)Fe(CN)3][ISyntheses, Crystal Structures and Magnetic Properties. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 3681	2.3	35
22	Copper phosphonates with dinuclear and layer structures: a structural and magnetic study. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 4557-4563	3.3	41
21	An interesting magnetic behavior in molecular solid containing one-dimensional Ni(III) chain. <i>Chemical Physics Letters</i> , 2004 , 396, 353-358	2.5	95
20	Self-assembly of a 1D heterotrimetallic Cu(II)-Sr(II)-Na(I) propeller-like chiral coordination polymer with ferromagnetic interactions. <i>Chemical Communications</i> , 2004 , 2348-9	5.8	33
19	The observation of superparamagnetic behavior in molecular nanowires. <i>Journal of the American Chemical Society</i> , 2004 , 126, 8900-1	16.4	241
18	Complicated magnetic behavior in one-dimensional nickel(III) chain complex [1-(4?-cyanobenzyl)pyridinium][Ni(mnt)2](mnt2日maleonitriledithiolate). <i>Chemical Physics Letters</i> , 2003 , 369, 41-48	2.5	75
17	New ion-pair nickel(III) complexes containing [Ni(B2]2] (B2221,2-benzenedithiolate) fragments: synthesis, crystal structure and properties. <i>Polyhedron</i> , 2003 , 22, 299-305	2.7	14
16	Synthesis, crystal structures, and magnetic properties of two cyano-bridged tungstate(V)-manganese(II) bimetallic magnets. <i>Inorganic Chemistry</i> , 2003 , 42, 1848-56	5.1	120
15	Spontaneous magnetization in [1-(4-cyanobenzyl)pyridinium][Pt(mnt)2]: synthesis, crystal structure and magnetic property. <i>Inorganic Chemistry Communication</i> , 2002 , 5, 395-398	3.1	25
14	Unusual magnetic property associated with dimerization within a nickel tetramer. <i>Inorganic Chemistry</i> , 2002 , 41, 5931-3	5.1	104
13	Unusual magnetic properties of one-dimensional molecule-based magnets associated with a structural phase transition. <i>Inorganic Chemistry</i> , 2002 , 41, 5686-92	5.1	190
12	Peculiar magnetic behavior in ion-pair complex [1-(4'-fluorobenzyl)pyridinium][Ni(mnt)2] (mnt2- = maleonitriledithiolate). <i>Chemical Communications</i> , 2002 , 2346-7	5.8	120
11	Synthesis, crystal structure and magnetic properties of a novel one-dimensional nickel(III) chain complex showing ferromagnetic ordering at low temperature. <i>Dalton Transactions RSC</i> , 2002 , 2868		85
10	Synthesis, crystal and molecular structure and magnetic properties of [Mn(saloph)(N3)(CH3OH)]. Journal of Molecular Structure, 2001 , 570, 137-143	3.4	16

9	. Transition Metal Chemistry, 2001 , 26, 247-251	2.1	10
8	Syntheses, crystal structures and magnetic properties of two honeycomb-layered bimetallic assemblies, K2[NiII(cyclam)]3[FeII(CN)6]2 [12H2O and [NiII(cyclam)]3[FeIII(CN)6]2 [16H2O. <i>Transition Metal Chemistry</i> , 2001 , 26, 345-350	2.1	13
7	Ferromagnetic Ordering in a Two-Dimensional Copper Complex with Dual End-to-End and End-On Azide Bridges This work was supported by the National Natural Science Foundation of China (NSF 29631040 and 29929001), The Major State Basic Research Development Program (Grant No.	16.4	105
6	C2000077500 and No. G1998061306), and the Malaysian Government research grant R&D No. Preparation, crystal structures and magnetic properties of 12-metallacrown-4 complexes with the donors on the organic periphery of molecule. <i>Inorganica Chimica Acta</i> , 2000 , 305, 135-142	2.7	36
5	Acetatodiaqua. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56 (Pt 4), 430)-1	3
4	4-(4-hydroxybenzylideneamino)-4H-1,2,4-triazole hemihydrate. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 2000 , 56 (Pt 2), 242-3		1
3	Magnetic properties of two 1D complexes with mixed bridging ligands. <i>Polyhedron</i> , 2000 , 19, 1461-146	642.7	42
2	Syntheses, crystal structures and properties of the novel Co(II) and Ni(II) complexes with 4-(p-methylphenyl)-3,5-bis(pyridin-2-yl)-1,2,4-triazole. <i>Polyhedron</i> , 2000 , 19, 2019-2025	2.7	58
1	Syntheses, crystal structures and spectroscopic properties of the novel complexes [M(MOBPT)*2 (H2O)2](ClO4)2 [14H2O (M = CoII and NiII). <i>Transition Metal Chemistry</i> , 2000 , 25, 589-593	2.1	12